Stabilizing Electron Transport of 2D Materials.

Adv Mater

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, School of Science, Tianjin University, Tianjin, 300072, China.

Published: December 2024

2D materials are promising candidates for beyond-Si electronic devices. However, their stability is a key bottleneck in their industrial applications. The instability of 2D materials is mainly attributed to their intrinsic susceptibility to O and HO-particularly to reactive oxygen species (ROS), which have strong oxidizing properties. Inspired by the antioxidant effect of vitamin C (VC) in organisms, a strategy based on the use of VC to stabilize electron transport in 2D materials is developed, which significantly improves the performance and stability of these materials and devices. The mobility is increased by more than an order of magnitude, and excellent performance of the device is maintained in air for >327 days, which is the best reported stability for MoS field-effect transistors to date. VC scavenges existing ROS via oxidation reactions and inhibits the generation of ROS by shielding excitons from oxygen quenching, which provides 2D materials lasting protection from electron trapping and oxidative damage, stabilizing electron transport. This approach, which is based on the simple utilization of readily available VC, has considerable potential for large-scale applications in the 2D material electronics industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202411941DOI Listing

Publication Analysis

Top Keywords

electron transport
12
stabilizing electron
8
transport materials
8
materials
6
materials materials
4
materials promising
4
promising candidates
4
candidates beyond-si
4
beyond-si electronic
4
electronic devices
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.

View Article and Find Full Text PDF

The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!