Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice. Under the high level of reactive oxygen species (ROS) environment in damaged mitochondria of microglia and neurons, the linker (thioketal, TK) between CsA and SS-31 is broken and CsA and SS-31 are released while consuming ROS in the microenvironment. The released CsA and SS-31 synergistically restore the mitochondrial membrane potential and the balance between the fission and fusion of mitochondria, which subsequently protect neurons from apoptosis and reduce the activation of microglia in the brains of 5 × FAD mice. Ultimately, the neuroinflammation and cognitive impairment of 5 × FAD mice are ameliorated. This research provides a synergistic treatment strategy for AD through alleviating mitochondrial dysfunction to reduce neuroinflammation and restore the function of neurons simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202408581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!