A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Origin, Distribution, and Influential Factors of Organic Acids in Deep and Ultradeep Clastic Reservoirs within the Fukang Sag of the Junggar Basin. | LitMetric

AI Article Synopsis

  • - In deep and ultradeep clastic reservoirs, secondary porosity primarily serves as hydrocarbon storage space, influenced by the processes involving water-soluble organic acids (WSOAs), a topic less studied in deeper formations compared to traditional shallow reservoirs.
  • - Researchers analyzed samples from Mesozoic Permian clastic rock formations in western China's Fukang Sag, using extraction and chromatography methods to understand the composition and distribution of WSOAs, alongside oilfield production data.
  • - The study found that WSOA concentrations initially rise with depth but then decline, showing significant links between WSOA levels and changes in formation pressure and temperature, highlighting the importance of these organic acids in maintaining secondary pore spaces in deeper reservoirs. *

Article Abstract

In deep and ultradeep clastic reservoirs, secondary porosity functions as the primary space for hydrocarbon storage, intricately associated with the dissolution processes of water-soluble organic acids (WSOAs). However, conventional theories concerning secondary porosity predominantly emphasize medium-depth or shallow reservoirs, lacking a thorough investigation into how WSOA-driven mechanisms affect deeper strata formations. To bridge this gap, our research involved selecting 36 samples from Mesozoic Permian clastic rock formations situated in western China's Fukang Sag within the Junggar Basin region. We performed comprehensive analyses utilizing the Soxhlet extraction method combined with qualitative and quantitative assessments via 940 ion chromatography (Metrohm AG). These findings were integrated with oilfield production data to investigate the sources, composition, distribution characteristics, and influencing factors associated with organic acids in deep and ultradeep clastic reservoirs. Our investigation revealed that WSOAs persist even within ultradeep reservoirs; increased buried depths initially lead to a rise in WSOA concentrations followed by a subsequent decline. Similarly, effective porosities closely mirrored these trends alongside variations observed across WSOA concentrations while permeability remained consistently low yet stable throughout these transitions. This indicated significant involvement of WSOAs during dissolution processes contributing to the creation and maintenance of secondary pore spaces. Furthermore, notable positive correlations have emerged establishing a direct relationship between WSOA generation concentrations and corresponding shifts in formation pressures and temperatures. In deep and ultradeep reservoirs, the concentration of organic acids exhibits an initial increase followed by a subsequent decrease in response to escalating formation temperature and pressure. These findings underscore the critical roles played by key influential factors associated with WSOAs in these geological settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656257PMC
http://dx.doi.org/10.1021/acsomega.4c07222DOI Listing

Publication Analysis

Top Keywords

organic acids
16
deep ultradeep
16
ultradeep clastic
12
clastic reservoirs
12
influential factors
8
acids deep
8
fukang sag
8
sag junggar
8
junggar basin
8
secondary porosity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: