Current COVID-19 vaccines are largely limited in their ability to induce broad, durable immunity against emerging viral variants. Design and development of improved vaccines utilizing existing platforms requires an in-depth understanding of the antigenic and immunogenic properties of available vaccines. Here we examined the antigenicity of two of the original COVID-19 vaccines, mRNA-1273 and NVX-CoV2373, by electron microscopy-based polyclonal epitope mapping (EMPEM) of serum from immunized non-human primates (NHPs) and clinical trial donors. Both vaccines induce diverse polyclonal antibody (pAb) responses to the N-terminal domain (NTD) in addition to the receptor-binding domain (RBD) of the Spike protein, with the NTD supersite being an immunodominant epitope. High-resolution cryo-EMPEM studies revealed extensive pAb responses to and around the supersite with unique angles of approach and engagement. NTD supersite pAbs were also the most susceptible to variant mutations compared to other specificities, indicating that ongoing Spike ectodomain-based vaccine design strategies should consider immuno-masking this site to prevent induction of these strain-specific responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661243 | PMC |
http://dx.doi.org/10.1101/2024.12.11.628030 | DOI Listing |
Inflammopharmacology
December 2024
Department of Pharmacy, Integral University, Lucknow, 226026, India.
Introduction: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a cataclysmic pandemic. Several SARS-CoV-2 mutations have been found and reported since the COVID-19 pandemic began. After the Alpha, Beta, Gamma, and Delta variants, the Omicron (B.
View Article and Find Full Text PDFFew sources have reported empirical social contact data from resource-poor settings. To address this shortfall, we recruited 1,363 participants from rural and urban areas of Mozambique during the COVID-19 pandemic, determining age, sex, and relation to the contact for each person. Participants reported a mean of 8.
View Article and Find Full Text PDFSince the severe acute respiratory syndrome outbreak in 2003, China has invested substantial efforts in promoting scientific and technological advances for medical countermeasures against high-threat pathogens. The examination of China's landscape identifies progress and gaps in research and development (R&D) and also highlights management and regulatory issues that should be of concern to other countries. Our study examined the current state of R&D of medical countermeasures in China during 1990-2022.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
The unprecedented success of mRNA vaccines against COVID-19 has inspired scientists to develop mRNA vaccines for cancer immunotherapy. However, using nucleoside modified mRNA as vaccine, though evading innate immune toxicity, diminishes its therapeutic efficacy for cancers. Here, we report a polyvalent stimulator of interferon genes (STING) activating polymer (termed as PD) to bolster the immunogenicity of mRNA vaccine.
View Article and Find Full Text PDFCurrent COVID-19 vaccines are largely limited in their ability to induce broad, durable immunity against emerging viral variants. Design and development of improved vaccines utilizing existing platforms requires an in-depth understanding of the antigenic and immunogenic properties of available vaccines. Here we examined the antigenicity of two of the original COVID-19 vaccines, mRNA-1273 and NVX-CoV2373, by electron microscopy-based polyclonal epitope mapping (EMPEM) of serum from immunized non-human primates (NHPs) and clinical trial donors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!