A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Copper-Based Nanoparticles for Effective Treatment Against Sepsis-Induced Lung Injury in Mice Model. | LitMetric

Introduction: Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (CuO USNPs) was developed to address sepsis-induced lung injury (SILI).

Methods: The synthesized nanoparticles were thoroughly characterized to assess their properties. In vitro experiments were conducted to determine the biologically effective concentration and elucidate the anti-inflammatory mechanism of action. These findings were further supported by in vivo studies, showcasing the material's efficacy in mitigating SILI.

Results: The CuO USNPs demonstrated remarkable scavenging capabilities for hydrogen peroxide (HO), superoxide anions (O ), and hydroxyl radicals (·OH), attributed to their catalase (CAT)- and superoxide dismutase (SOD)-like activities. Additionally, the nanoparticles exhibited strong anti-inflammatory effects, preserved mitochondrial homeostasis through potent ROS scavenging, and significantly reduced cell death. In vivo studies on mice further validated their protective role against SILI.

The Conclusion: This study highlights the therapeutic potential of CuO USNPs in treating sepsis-induced lung injury by effectively scavenging ROS and reducing cell death. These findings provide compelling evidence for the future use of copper-based nanoparticles as antioxidant therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662683PMC
http://dx.doi.org/10.2147/IJN.S488357DOI Listing

Publication Analysis

Top Keywords

lung injury
16
sepsis-induced lung
12
cell death
12
cuo usnps
12
copper-based nanoparticles
8
vivo studies
8
nanoparticles effective
4
effective treatment
4
treatment sepsis-induced
4
lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!