Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single cell Amperometry (SCA) is a powerful, sensitive, high temporal resolution electrochemical technique used to quantify secreted molecular messengers from individual cells and vesicles. This technique has been extensively applied to study the process of exocytosis, and it has also been applied, albeit less frequently, to investigate insulin exocytosis from single pancreatic beta cells. Insufficient insulin release can lead to diabetes, a chronic lifestyle disorder that affects millions of people worldwide. This review aims to summarize and highlight electrochemical measurements of insulin via monitoring its secretion from beta cells by SCA with micro- and nanoelectrodes since the 1990s and to explain how and why serotonin is used as a proxy for monitoring insulin during exocytosis from single beta cells. Finally, we describe how the combination of SCA measurements with the intracellular vesicle impact electrochemical cytometry (IVIEC) technique has led to important findings regarding fractional release types in beta cells. These findings, reported recently, have opened a new window in the study of pore formation, exocytosis from single vesicles, and the mechanisms of insulin secretion. This sensitive cellular electroanalysis approach should help in the development of novel therapeutic strategies targeting diabetes in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659994 | PMC |
http://dx.doi.org/10.1021/acsmeasuresciau.4c00058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!