A vast multitude of tasks in histopathology could potentially benefit from the support of artificial intelligence (AI). Many examples have been shown in the literature and first commercial products with FDA or CE-IVDR clearance are available. However, two key challenges remain: (1) a scarcity of thoroughly annotated images, respectively the laboriousness of this task, and (2) the creation of robust models that can cope with the data heterogeneity in the field (domain generalization). In this work, we investigate how the combination of prototypical few-shot classification models and data augmentation can address both of these challenges. Based on annotated data sets that include multiple centers, multiple scanners, and two tumor entities, we examine the robustness and the adaptability of few-shot classifiers in multiple scenarios. We demonstrate that data from one scanner and one site are sufficient to train robust few-shot classification models by applying domain-specific data augmentation. The models achieved classification performance of around 90% on a multiscanner and multicenter database, which is on par with the accuracy achieved on the primary single-center single-scanner data. Various convolutional neural network (CNN) architectures can be used for feature extraction in the few-shot model. A comparison of nine state-of-the-art architectures yielded that EfficientNet B0 provides the best trade-off between accuracy and inference time. The classification of prototypical few-shot models directly relies on class prototypes derived from example images of each class. Therefore, we investigated the influence of prototypes originating from images from different scanners and evaluated their performance also on the multiscanner database. Again, our few-shot model showed a stable performance with an average absolute deviation in accuracy compared to the primary prototypes of 1.8% points. Finally, we examined the adaptability to a new tumor entity: classification of tissue sections containing urothelial carcinoma into normal, tumor, and necrotic regions. Only three annotations per subclass (e.g., muscle and adipose tissue are subclasses of normal tissue) were provided to adapt the few-shot model, which obtained an overall accuracy of 93.6%. These results demonstrate that prototypical few-shot classification is an ideal technology for realizing an interactive AI authoring system as it only requires few annotations and can be adapted to new tasks without involving retraining of the underlying feature extraction CNN, which would in turn require a selection of hyper-parameters based on data science expert knowledge. Similarly, it can be regarded as a guided annotation system. To this end, we realized a workflow and user interface that targets non-technical users.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662277 | PMC |
http://dx.doi.org/10.1016/j.jpi.2024.100388 | DOI Listing |
J Pathol Inform
December 2024
Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Medical Image Analysis Group, Erlangen, Germany.
A vast multitude of tasks in histopathology could potentially benefit from the support of artificial intelligence (AI). Many examples have been shown in the literature and first commercial products with FDA or CE-IVDR clearance are available. However, two key challenges remain: (1) a scarcity of thoroughly annotated images, respectively the laboriousness of this task, and (2) the creation of robust models that can cope with the data heterogeneity in the field (domain generalization).
View Article and Find Full Text PDFPeerJ Comput Sci
October 2024
School of Mathematics, Harbin Institute of Technology, Harbin, HeiLongJiang, China.
Few-shot learning aims to enable machines to recognize unseen novel classes using limited samples akin to human capabilities. Metric learning is a crucial approach to addressing this challenge, with its performance primarily dependent on the effectiveness of feature extraction and prototype computation. This article introduces an Adaptive Prototype few-shot image classification method based on Feature Pyramid (APFP).
View Article and Find Full Text PDFMed Image Anal
February 2025
Surrey Institute for People-Centred Artificial Intelligence, and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK. Electronic address:
Sensors (Basel)
October 2024
School of Automation, Central South University, Changsha 410083, China.
In few-shot fault diagnosis tasks in which the effective label samples are scarce, the existing semi-supervised learning (SSL)-based methods have obtained impressive results. However, in industry, some low-quality label samples are hidden in the collected dataset, which can cause a serious shift in model training and lead to the performance of SSL-based method degradation. To address this issue, the latest prototypical network-based SSL techniques are studied.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2024
Depicting novel classes with language descriptions by observing few-shot samples is inherent in human-learning systems. This lifelong learning capability helps to distinguish new knowledge from old ones through the increase of open-world learning, namely Few-Shot Class-Incremental Learning (FSCIL). Existing works to solve this problem mainly rely on the careful tuning of visual encoders, which shows an evident trade-off between the base knowledge and incremental ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!