A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multivariate differential association analysis. | LitMetric

Multivariate differential association analysis.

Stat (Int Stat Inst)

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A.

Published: June 2024

Identifying how dependence relationships vary across different conditions plays a significant role in many scientific investigations. For example, it is important for the comparison of biological systems to see if relationships between genomic features differ between cases and controls. In this paper, we seek to evaluate whether relationships between two sets of variables are different or not across two conditions. Specifically, we assess: We propose a new kernel-based test to capture the differential dependence. Specifically, the new test determines whether two measures that detect dependence relationships are similar or not under two conditions. We introduce the asymptotic permutation null distribution of the test statistic and it is shown to work well under finite samples such that the test is computationally efficient, significantly enhancing its usability in analyzing large datasets. We demonstrate through numerical studies that our proposed test has high power for detecting differential linear and non-linear relationships. The proposed method is implemented in an R package kerDAA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661859PMC
http://dx.doi.org/10.1002/sta4.704DOI Listing

Publication Analysis

Top Keywords

dependence relationships
8
relationships
5
test
5
multivariate differential
4
differential association
4
association analysis
4
analysis identifying
4
identifying dependence
4
relationships vary
4
vary conditions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!