The assessment of mental fatigue (MF) and attention span in educational and healthcare settings frequently relies on subjective scales or methods such as induced-task interruption tools. However, these approaches are deficient in real-time evaluation and dynamic definitions. To address this gap, this paper proposes a Continuous Quantitative Scale (CQS) that allows for the natural and real-time measurement of MF based on group-synchronized electroencephalogram (EEG) data. In this study, computational psychophysiology was used to measure MF scores during a realistic class. Our methodology continuously monitored participants' psychological states without interrupting their regular routines, providing an objective evaluation. By analyzing multi-subject brain-computer interface (mBCI) data with a collaborative computing approach, the group-synchronized data were obtained from 10 healthy participants to assess MF levels. Each participant wore an EEG headset for only 10 min of preparation before performing a sustained task for 80 min. Our findings indicate that a lecture duration of 18.9 min is most effective, while a duration of 43.1 min leads to heightened MF levels. By focusing on the group-level simultaneous data analysis, the effects of individual variability were mitigated and the efficiency of cognitive computing was improved. From the perspective of a neurocomputational measure, these results confirm previous research. The proposed CQS provides a reliable, objective, memory- and emotion-free approach to the assessment of MF and attention span. These findings have significant implications not only for education, but also for the study of group cognitive mechanisms and for improving the quality of mental healthcare.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655751 | PMC |
http://dx.doi.org/10.1007/s11571-024-10126-9 | DOI Listing |
Sensors (Basel)
December 2024
Faculty of Information Science and Technology, Beijing University of Technology, Beijing 100124, China.
With the increasing complexity of urban roads and rising traffic flow, traffic safety has become a critical societal concern. Current research primarily addresses drivers' attention, reaction speed, and perceptual abilities, but comprehensive assessments of cognitive abilities in complex traffic environments are lacking. This study, grounded in cognitive science and neuropsychology, identifies and quantitatively evaluates ten cognitive components related to driving decision-making, execution, and psychological states by analyzing video footage of drivers' actions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil Engineering and Architecture, University of Catania, 64 Santa Sofia Street, 95123 Catania, Italy.
Eye-tracking technologies are emerging in research aiming to understand the visual behavior of cyclists to improve their safety. These technologies gather real-time information to reveal what the cyclists look at and how they respond at a specific location and time. This systematic review investigates the use of eye-tracking systems to improve cyclist safety.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
The relationships between facial expression and color affect human cognition functions such as perception and memory. However, whether these relationships influence selective attention and brain activity contributed to selective attention remains unclear. For example, reddish angry faces increase emotion intensity, but it is unclear whether brain activity and selective attention are similarly enhanced.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFPLoS One
January 2025
Graduate School of Humanities and Social Sciences, Kyoto University of Advanced Science, Kyoto, Japan.
The joint Simon effect refers to inhibitory responses to spatially competing stimuli during a complementary task. This effect has been considered to be influenced by the social factors of a partner: sharing stimulus-action representation. According to this account, virtual interactions through their avatars would produce the joint Simon effect even when the partner did not physically exist in the same space because the avatars are intentional agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!