This study aims to evaluate cerebrospinal fluid (CSF) flow dynamics within ventricles, and the subarachnoid space (SAS) using the velocity selective spin labeling (VSSL) MRI method with Fourier-transform-based velocity selective inversion preparation. The study included healthy volunteers who underwent MRI scanning with specific VSSL parameters optimized for CSF flow quantification. The VSSL sequence was calibrated against phase-contrast MRI (PC-MRI) to ensure accurate flow velocity measurements. The CSF flow patterns observed in the ventricles were consistent with those obtained using 3D amplified MRI and other advanced MRI techniques, verifying the reliability of the VSSL method. The VSSL method successfully measured CSF flow in the SAS along major arteries, including the middle cerebral artery (MCA), anterior cerebral artery (ACA), and posterior cerebral artery (PCA), with an average flow velocity of 0.339 ± 0.117 / . The diffusion component was well suppressed by flow-compensated gradients, enabling comprehensive mapping of the rapid CSF flow pattern in the SAS system and ventricles. The flow pattern in the SAS system closely resembles the recently discovered perivascular subarachnoid space (PVSAS) system. CSF flow around the MCA, PCA, and ACA arteries in the SAS exhibited a weak orientation dependency. CSF flow in the ventricles was also measured, with an average flow velocity of 0.309 ± 0.116 / , and the highest velocity observed along the superior-inferior direction. This study underscores the potential of VSSL MRI as a non-invasive tool for investigating CSF dynamics in both SAS and ventricles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661349PMC
http://dx.doi.org/10.1101/2024.12.09.24318672DOI Listing

Publication Analysis

Top Keywords

csf flow
28
flow
12
subarachnoid space
12
velocity selective
12
flow velocity
12
cerebral artery
12
cerebrospinal fluid
8
flow ventricles
8
ventricles subarachnoid
8
selective spin
8

Similar Publications

This study aims to evaluate cerebrospinal fluid (CSF) flow dynamics within ventricles, and the subarachnoid space (SAS) using the velocity selective spin labeling (VSSL) MRI method with Fourier-transform-based velocity selective inversion preparation. The study included healthy volunteers who underwent MRI scanning with specific VSSL parameters optimized for CSF flow quantification. The VSSL sequence was calibrated against phase-contrast MRI (PC-MRI) to ensure accurate flow velocity measurements.

View Article and Find Full Text PDF

Objective: Genetic associations and blockade of the interleukin-23/IL-17 axis with monoclonal antibodies support a role for this pathway in psoriatic arthritis (PsA). This study examines the requirement of IL-23 for IL-17 production, and the role of the metabolic microenvironment in the expansion of Th-derived cells in PsA.

Methods: PsA patient synovial fluid or peripheral blood Th cell frequencies were evaluated by flow cytometry using CCR6, CD161 and T-bet as phenotypic markers, and the cytokines IFN-γ, GM-CSF and IL-17 assessed by flow cytometry and ELISA.

View Article and Find Full Text PDF

Lumped parameter simulations of cervical lymphatic vessels: dynamics of murine cerebrospinal fluid efflux from the skull.

Fluids Barriers CNS

December 2024

Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA.

Background: Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders.

Methods: We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs.

View Article and Find Full Text PDF

Recapitulation of physiologic and pathophysiologic pulsatile CSF flow in purpose-built high-throughput hydrocephalus bioreactors.

Fluids Barriers CNS

December 2024

Department of Chemical Engineering and Materials Science, Wayne State University, 6135 Woodward Avenue, Rm 1413, Detroit, MI, 48202, USA.

Background: Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 500 people are born with hydrocephalus. Despite more than 60 years of concerted efforts, shunts still have the highest failure rate of any neurological device requiring follow-up shunt revision surgeries and contributing to the $2 billion cost of hydrocephalus care in the US alone.

View Article and Find Full Text PDF

Dendritic cells (DCs) are essential for promoting T lymphocyte responses since they are specialist antigen-presenting cells. In order to maintain tolerance or initiate immune responses, DCs must be activated in a balanced and regulated manner via diverse signaling pathways. By using a variety of pharmacological components, we can interfere with their different signaling pathways such as the mammalian target of rapamycin (mTOR) to appropriately modulate DC activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!