Bimetallic complexes have demonstrated a great ability to enhance the activity of monometallic systems for bond activation and catalysis. In this work, we explore the opposite approach: using a second metal to passivate the activity of another by reversible bimetallic inhibition. To do so we have synthesized a family of nine electrophilic gold complexes of formula Au(PR)(NTf) ([NTf] = [N(SOCF)]) that can act as inhibitors in the semihydrogenation of terminal and internal alkynes catalyzed by the iconic iridium Vaska complex IrCl(CO)(PPh). This behavior parallels the well-known passivation effect of lead over palladium in the heterogeneous Lindlard catalyst. Most gold fragments, except for the most hindered, form metal-only Lewis pairs upon combination with iridium, which have been fully characterized and exhibit distinct dative Ir → Au bonds. When applied to alkyne hydrogenation, these bimetallic structures have a clear tendency toward olefin formation, while the monometallic catalyst unselectively leads to overreduction products. Our computational studies not only provide a feasible mechanism for the Ir-only system, but also evince the active role of gold in passivating iridium by reversibly forming heterobimetallic structures that lead to enhanced selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c15359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!