Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In untargeted lipidomics experiments, putative lipid identifications generated by automated analysis software require substantial manual filtering to arrive at usable high-confidence data. However, identification software tools do not make full use of the available data to assess the quality of lipid identifications. Here, we present a machine-learning-based model to provide coherent, holistic quality scores based on multiple lines of evidence. Underutilized metrics such as isotope ratios and chromatographic behavior allow for much higher accuracy of identification confidence. We find that approximately 50% of tandem mass spectrometry-based automated lipid identifications are incorrect but that multidimensional rescoring reduces false discoveries to only 7% while retaining 80% of true positives. Our method works with most chromatography methods and generalizes across a family of MS instruments. LipoCLEAN is available at https://github.com/stavis1/LipoCLEAN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c04040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!