A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications. | LitMetric

Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications.

Int J Biol Macromol

Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China. Electronic address:

Published: December 2024

Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances. The quercetin-mediated strategy could effectively modulate the non-covalent interactions within hydrogel, which served as the sacrificial bonds to dissipate large energy, leading to the high toughness of chitin-based composite hydrogels (0.70-1.02 MJ·m). Furthermore, through utilizing quercetin-assisted non-covalent interactions, effective dispersion of inorganic materials (e.g., molybdenum disulfide, carbon nanotube and calcium carbonate) within hydrogels was achieved, resulting in composite hydrogels with diverse functionalities. Our quercetin-mediated strategy conceptualized in this work paves the way for the development of a diverse array of chitin-based composite hydrogels which incorporate various functional inorganic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139043DOI Listing

Publication Analysis

Top Keywords

composite hydrogels
20
chitin-based composite
16
inorganic materials
12
diverse functionalities
8
compatibility quercetin-mediated
8
quercetin-mediated strategy
8
non-covalent interactions
8
hydrogels
6
composite
5
quercetin-mediated
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!