Contextual modulation emerges by integrating feedforward and feedback processing in mouse visual cortex.

Cell Rep

Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA.

Published: December 2024

Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual effects across different stimulus conditions is still lacking. Here we present a unified circuit model of mouse visual cortex that accounts for the main standard forms of contextual modulation. This data-driven and biologically realistic circuit, including three primary inhibitory cell types, sheds light on how bottom-up, top-down, and recurrent inputs are integrated across retinotopic space to generate contextual effects in layer 2/3. We establish causal relationships between neural responses, geometrical features of the inputs, and the connectivity patterns. The model not only reveals how a single canonical cortical circuit differently modulates sensory response depending on context but also generates multiple testable predictions, offering insights that apply to broader neural circuitry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.115088DOI Listing

Publication Analysis

Top Keywords

contextual modulation
8
mouse visual
8
visual cortex
8
neural responses
8
contextual effects
8
contextual
4
modulation emerges
4
emerges integrating
4
integrating feedforward
4
feedforward feedback
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!