AI Article Synopsis

  • The study developed a microbroth assay to evaluate the host range and lytic activity of phages against carbapenemase-producing K. pneumoniae isolates, addressing limitations of the traditional agar overlay method.
  • The host range was tested on 11 specific phages using various concentrations and bacterial inocula, with analysis of growth inhibition over 6 and 24 hours.
  • Results showed significant differences in growth inhibition among phages and identified specific cutoffs for lysis detection, demonstrating the microbroth assay's effectiveness and reliability.

Article Abstract

Introduction: The host range of phages is usually assessed with the agar overlay method. However, this method is both cumbersome and subjective. Therefore, a microbroth assay was developed to assess host range and lytic activity patterns of phages in the agar overlay method against a collection of carbapenemase-producing Klebsiella pneumoniae (CRKP) isolates.

Methods: The host range of 11 K. pneumoniae-specific phages against 8 non-repetitive well-characterized CRKP isolates was assessed with the agar overlay method and a microbroth assay by monitoring optical density (OD) at 630 nm for 24 h at different phage concentrations (5 × 10-5 × 10 PFU/ml) and two bacterial inocula (5 × 10 and 5 × 10 CFU/ml). The lytic activity of phage-bacteria pairs with transparent/semi-transparent (N = 7), turbid (N = 6), and no (N = 6) lysis in overlay agar method was compared statistically with the growth inhibition at 6 and 24 h in the microbroth assay with analysis of variance (ANOVA), receiver operating characteristic curves (ROC) curves and Fisher's exact test. Optimal cutoffs were determined, and sensitivity and specificity were calculated.

Results: Statistically significant differences of growth inhibition at 6 and 24 h for phage concentrations ≥ 5 × 10 PFU/ml for both inocula were found between phages with transparent/semi-transparent, turbid, and no lysis. ROC curve analysis indicated an optimal growth inhibition cutoff of ≥ 31% at high phage and bacteria concentrations for detecting phages with lysis and ≥ 61% at high-phage and low-bacteria concentrations for detecting phages with transparent/semi-transparent lysis with sensitivity/specificity 100%/100% and 100%/86%, respectively.

Conclusions: The microbroth growth inhibition assay provided fast, reliable, and objective results for K. pneumoniae phage host-range lytic activity differentiating different patterns of lysis in a high-throughput format.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40121-024-01092-0DOI Listing

Publication Analysis

Top Keywords

growth inhibition
20
lytic activity
16
host range
12
agar overlay
12
overlay method
12
microbroth assay
12
carbapenemase-producing klebsiella
8
klebsiella pneumoniae
8
microbroth growth
8
inhibition assay
8

Similar Publications

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.

Regen Biomater

November 2024

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.

Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Transcriptomic analysis of the inhibition mechanisms against by antibacterial aptamer B4.

Front Vet Sci

December 2024

State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China.

is a common bacterial pathogen in aquaculture, often leading to visceral white spot disease in large yellow croakers (). Previous studies have found that certain aptamers show an efficient antibacterial effect against this pathogen. In this study, we analyzed the transcriptome of to get insights into the antibacterial and inhibitions mechanisms following exposure to the aptamer B4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!