The molecular shape and size of the extracellular chlorocruorin of Myxicola infundibulum was determined using scanning transmission electron microscopy and its dissociation in the presence of sodium dodecyl sulfate (SDS) was investigated using polyacrylamide gel electrophoresis. The shape of the chlorocruorin is that of a two-tiered hexagon with a vertex-to-vertex diameter of 29.0-29.5 nm and a height of 19.0-19.7 nm: it appears to be smaller by 5-10% relative to several annelid extracellular hemoglobins examined by scanning transmission electron microscopy. The quaternary structure of the chlorocruorin appears to be sensitive to Ca(II) concentration; dissociation fragments of the whole molecule were observed, consisting of octamers an dimers of one-twelfth subunits. The unreduced chlorocruorin dissociated into two subunits with estimated molecular masses of 23 000 (1) and 60 000 (2); the reduced chlorocruorin dissociated into subunits with estimated molecular masses of 13 000 (I), 14 000 (II) and 30 000 (III). SDS-polyacrylamide gel electrophoresis of reduced subunits 1 and 2 showed that subunit 1 corresponded to subunit III and that subunit 2 dissociated to subunits I and II. Densitometry of the polyacrylamide gels indicates that 85-90% of the Myxicola chlorocruorin consists of disulfide-bonded tetramers of polypeptide chains of about 15 000. Such a pattern of subunit aggregation has not been observed previously in annelid extracellular hemoglobins and chlorocruorins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(85)90007-xDOI Listing

Publication Analysis

Top Keywords

dissociated subunits
12
000 000
12
myxicola infundibulum
8
scanning transmission
8
transmission electron
8
electron microscopy
8
gel electrophoresis
8
annelid extracellular
8
extracellular hemoglobins
8
chlorocruorin dissociated
8

Similar Publications

Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.

View Article and Find Full Text PDF

Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N).

View Article and Find Full Text PDF

Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions.

View Article and Find Full Text PDF

Native Mass Spectrometry (nMS) is a versatile technique for elucidating protein structure. Surface-Induced Dissociation (SID) is an activation method in tandem MS predominantly employed for determining protein complex stoichiometry alongside information about interface strengths. SID-nMS data can be collected over a range of acceleration energies, yielding Energy Resolved Mass Spectrometry (ERMS) data.

View Article and Find Full Text PDF

The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!