AI Article Synopsis

  • Incessant ovulation contributes to ovarian high-grade serous carcinomas (HGSC), which primarily arise from the fallopian tube epithelium (FTE), and receptor tyrosine kinase (RTK) ligands play a key role in this process.
  • A study investigated follicular fluid exosomes from women undergoing in vitro fertilization to identify RTK ligands and their impact on FTE cells, using various RTK inhibitors.
  • The findings revealed that FF exosomes were rich in transformative abilities and essential EGFR ligands, promoting cell growth and migration, indicating their significant contribution to HGSC development.

Article Abstract

Background: Incessant ovulation is the main etiologic factor of ovarian high-grade serous carcinomas (HGSC), which mostly originate from the fallopian tube epithelium (FTE). Receptor tyrosine kinase (RTK) ligands essential for follicle development and ovulation wound repair were abundant in the follicular fluid (FF) and promoted the transformation of FTE cells. This study determined whether RTK ligands are present in FF exosomes and whether epidermal growth factor receptor (EGFR) signaling is essential for oncogenic activity.

Methods: The FF of women undergoing in vitro fertilization was fractionated based on the richness of exosomes and tested for transformation toward FTE cells under different RTK inhibitors. EGFR ligands in FF exosomes were identified, and downstream signaling proteins in FTE cells were characterized.

Results: The transforming activity of FF was almost exclusively enriched in exosomes, which possess a high capacity to induce anchorage-independent growth, clonogenicity, migration, invasion, and proliferation of FTE cells. EGFR inhibition abolished most of these activities. FF and FF exosome exposure markedly increased EGFR phosphorylation and the downstream signal proteins, including AKT, MAPK, and FAK. Multiple EGF family growth factors, such as amphiregulin, epiregulin, betacellulin, and transforming growth factor-alpha, were identified in FF exosomes.

Conclusions: Our results demonstrate that FF exosomes serve as carriers of EGFR ligands as well as ligands of other RTKs that mediate the transformation of FTE cells and underscore the need to further explore the content and roles of FF exosomes in HGSC development.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12935-024-03614-9DOI Listing

Publication Analysis

Top Keywords

fte cells
20
transformation fte
12
epidermal growth
8
growth factor
8
factor receptor
8
follicular fluid
8
fallopian tube
8
rtk ligands
8
ligands exosomes
8
egfr ligands
8

Similar Publications

Article Synopsis
  • Incessant ovulation contributes to ovarian high-grade serous carcinomas (HGSC), which primarily arise from the fallopian tube epithelium (FTE), and receptor tyrosine kinase (RTK) ligands play a key role in this process.
  • A study investigated follicular fluid exosomes from women undergoing in vitro fertilization to identify RTK ligands and their impact on FTE cells, using various RTK inhibitors.
  • The findings revealed that FF exosomes were rich in transformative abilities and essential EGFR ligands, promoting cell growth and migration, indicating their significant contribution to HGSC development.
View Article and Find Full Text PDF

Ovulation sources ROS to confer mutagenic activities on the TP53 gene in the fallopian tube epithelium.

Neoplasia

January 2025

Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC. Electronic address:

Introduction: Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination.

View Article and Find Full Text PDF

Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread.

View Article and Find Full Text PDF

This study explores the impact of γ-irradiation on ethanolic extracts of Solanum aculeastrum Dunal. The anti-cancer and antimicrobial properties were investigated. The obtained results revealed that total phenol (TP) and total flavonoid (TF) of total ethanol extract (100%) (FTE) were higher than 70% ethanol extract (SE), and these contents increased after gamma radiation with 5 kGy.

View Article and Find Full Text PDF

Vitamin D Significantly Inhibits Carcinogenesis in the Mogp-TAg Mouse Model of Fallopian Tube Ovarian Cancer.

Nutrients

September 2024

Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Endeavor Health, Evanston, IL 60201, USA.

Article Synopsis
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!