Crosslinking of histone H1 molecules to each other and to the core histones with bifunctional reagents in mouse liver nuclei and chromatin was compared with that under the conditions of random 'contacts' between these molecules. The patterns of crosslinking of the H1 subfractions (H1A, H1B, and H10) to each other in nuclei, chromatin and in solution at different ionic strengths due to random collisions were essentially the same. Moreover, the contacts between the H1 molecules were qualitatively the same in nuclei, chromatin and in solution also at the level of the chymotryptic halves of the H1 molecules. The contacts between the H1 molecules and the core histones in nuclei were similar to those obtained in chromatin at 70 mM NaCl, when H1 molecules readily migrate, and at 0.6 M NaCl, when H1 molecules are dissociated from chromatin. We conclude that spatial arrangement of H1 subfractions and mutual orientation of H1 molecules in isolated nuclei are random-like at least in terms of cross-linking. The static and dynamic models of histone H1 binding to chromatin compatible with the known data are considered. Although unequivocal verification of the models is not possible at present, the dynamic models do correspond better to recent data on the location of the histone H1 in nuclei and chromatin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-4781(85)90047-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!