AI Article Synopsis

  • * Overexpression of MaFLA27 led to increased expression of genes involved in cell wall components and modification, contributing to thicker cell walls and higher levels of cellulose, lignin, and certain pectins in plants.
  • * In contrast to wild-type plants, MaFLA27-overexpressing plants showed lower levels of pectin methyl-esterification and reduced reactive oxygen species after cold exposure, indicating a potential mechanism for improved cold tolerance linked to cell wall modifications.

Article Abstract

Fasciclin-like arabinogalactan proteins (FLAs) have been shown to improve plant tolerance to salt stress. However, their role in cold tolerance (CT) remains unclear. Here, we report that banana MaFLA27 positively regulates CT in Arabidopsis. MaFLA27-overexpression (OE) caused the upregulation of differentially expressed arabinogalactan proteins (AGPs) and genes involved in the biosynthesis of cellulose, lignin, and xylan, as well as the degradation of pectin and xyloglucan. Correspondingly, MaFLA27-OE plants exhibited increased cell wall thickness, enhanced cellulose lignin and starch granule content, elevated levels of partially homogalacturonans recognized by JIM5 and JIM7 antibodies, xyloglucan components recognized by CCRC-M39/104 and LM15 antibodies, LM14 antibody binding AGPs. In contrast, transgenic plants showed a decreased degree of pectin methyl-esterification and accumulated less reactive oxygen species after cold acclimation when compared to wild-type plants. A higher number of pectin methylesterases and cellulose and xylan biosynthesis genes were elevated after cold acclimation. Additionally, both Arabidopsis mutant cesa8 and cellulose inhibitor-treated plants displayed decreased freezing tolerance. Our data suggested that MaFLA27-OE in Arabidopsis may perceive and transmit low-temperature stress signals to the cellulose synthase complexes, activating cellulose synthesis and enhancing cold tolerance. These findings reveal a previously unreported cold-tolerance function of FLAs and highlight associated cell wall-mediated tolerance mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138748DOI Listing

Publication Analysis

Top Keywords

cold tolerance
12
banana mafla27
8
cell wall
8
arabinogalactan proteins
8
cellulose lignin
8
cold acclimation
8
tolerance
6
cellulose
6
cold
5
mafla27 confers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!