Poly(ADP-ribose) polymerase FonPARP1-catalyzed PARylation of protein disulfide isomerase FonPdi1 regulates pathogenicity of Fusarium oxysporum f. sp. niveum on watermelon.

Int J Biol Macromol

Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China. Electronic address:

Published: December 2024

Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is an important reversible post-translational protein modification in all eukaryotes, including plant pathogenic fungi. Previously, we revealed that FonPARP1, an active PARP, is crucial for the pathogenicity of Fusarium oxysporum f. sp. niveum (Fon), the causative agent of watermelon Fusarium wilt. This study explores the enzymatic activity and substrates of FonPARP1 in regulating Fon pathogenicity. FonPARP1 is localized in nuclei of Fon macroconidia and hyphae. Essential conserved domains and a key glutamic acid residue at position 729 are critical for FonPARP1 enzyme activity and pathogenicity function in Fon. FonPARP1 interacts with protein disulfide isomerase FonPdi1 and PARylates it at 13 glutamic acid residues, affecting the interaction ability, PDI activity, ER homeostasis, and pathogenicity function. FonPARG1, interacting with both FonPARP1 and FonPdi1, hydrolyzes poly(ADP-ribose) chains from auto-PARylated FonPARP1 and FonPARP1-PARylated FonPdi1. These findings underscore the role of FonPARP1-catalyzed PARylation in regulating Fon pathogenicity and its significance in plant pathogenic fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139046DOI Listing

Publication Analysis

Top Keywords

fonparp1-catalyzed parylation
8
protein disulfide
8
disulfide isomerase
8
isomerase fonpdi1
8
pathogenicity fusarium
8
fusarium oxysporum
8
oxysporum niveum
8
plant pathogenic
8
pathogenic fungi
8
regulating fon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!