Marine carbon sequestration, with its high potential and low risk of leakage, is an attractive technology for effectively addressing global climate change and reducing greenhouse gas emissions. A current concern about marine sequestration lies in the potential negative effects of the carbon sequestration process on the marine environment. CO hydrate sequestration is considered to be one of the most stable method of sequestration, and researchers are actively searching for promoters that facilitate hydrate sequestration and are friendly to the marine environment. Therefore, the development and utilization of environment-friendly promoters are of great significance for marine carbon sequestration by the hydrate method. In this study, two novel kinetic promoters, polycarboxylates (SP-409 and SPC-100), were applied. The changes in kinetic properties of CO hydrate generation and gas-liquid interfacial properties were investigated under different promoter types and concentrations, temperatures, and pressures. Visual observation reveals that the formation of hydrate first occurs at the gas-liquid interface and on the reactor wall, then gradually starts to diffuse into the interior of the solution, forming a white cylindrical solid with a hollow interior. After a comprehensive comparison of temperatures, pressures, and concentrations, the SP-409 solution promoted hydrate generation better than the SPC-100 solution, and the optimal promotion concentration was 1000 ppm. In addition, there is an exponential relationship between the rate of hydrate formation and interfacial tension (IFT), which means that the rate of hydrate generation can be quickly estimated from the interfacial tension data at a certain temperature and pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.178155 | DOI Listing |
J Environ Manage
December 2024
China MCC22 Group Corporation Ltd., No.16 Xingfu Road, Fengrun District, Tangshan, Hebei, China.
Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.
View Article and Find Full Text PDFChemosphere
December 2024
Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
The selective oxidation of NH-N into dinitrogen (N) is still a challenge. Currently, traditional advanced oxidation processes often involve in the chlorine free radicals to increase the selectivity of NH-N oxidation products towards N but is usually accompanied by the production of many toxic disinfection by-product. Herein, we reported a novel catalytic ozonation system (UV/O/MgO/NaSO) for selective NH-N oxidation based on the reducing capability and photochemical properties of NaSO.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China. Electronic address:
Marine carbon sequestration, with its high potential and low risk of leakage, is an attractive technology for effectively addressing global climate change and reducing greenhouse gas emissions. A current concern about marine sequestration lies in the potential negative effects of the carbon sequestration process on the marine environment. CO hydrate sequestration is considered to be one of the most stable method of sequestration, and researchers are actively searching for promoters that facilitate hydrate sequestration and are friendly to the marine environment.
View Article and Find Full Text PDFSci Data
December 2024
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
The majority of the carbon footprint of the cement industry originates from the decomposition of alkaline carbonates during clinker production. Recent studies have demonstrated that calcium oxides and other alkaline oxides in cement materials can sequester CO through the carbonation process and partially offset the carbon emissions generated during cement production. This study employs a comprehensive analytical model to estimate the CO uptake via hydrated cement carbonation, including concrete, mortar, construction waste, and cement kiln dust (CKD), covering major cement production and consumption regions worldwide from 1930 to 2023.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:
With the continued relevance of drug hydrates in pharmaceutical sciences, a comprehensive understanding of hydrate and anhydrate forms is essential, not only through individual case studies but also from a broader, systematic perspective. The Cambridge Structural Database (CSD) is a well-established database for crystal structures of organic molecules and here, the structural features of pharmaceutically relevant compounds forming hydrates were explored. Drug anhydrate and hydrate subsets were generated and further classified into separate anhydrate and hydrate sets for free drug, cocrystal/solvate, salt, multicomponent cocrystal/solvate, and salt cocrystal/solvate systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!