Background: Machine Learning (ML) models often struggle to generalize effectively to data that deviates from the training distribution. This raises significant concerns about the reliability of real-world healthcare systems encountering such inputs known as out-of-distribution (OOD) data. These concerns can be addressed by real-time detection of OOD inputs. While numerous OOD detection approaches have been suggested in other fields - especially in computer vision - it remains unclear whether similar methods effectively address challenges posed by medical tabular data.
Objective: To answer this important question, we propose an extensive reproducible benchmark to compare different OOD detection methods in medical tabular data across a comprehensive suite of tests.
Method: To achieve this, we leverage 4 different and large public medical datasets, including eICU and MIMIC-IV, and consider various kinds of OOD cases within these datasets. For example, we examine OODs originating from a statistically different dataset than the training set according to the membership model introduced by Debray et al. [1], as well as OODs obtained by splitting a given dataset based on a value of a distinguishing variable. To identify OOD instances, we explore a range of 10 density-based methods that learn the marginal distribution of the data, alongside 17 post-hoc detectors that are applied on top of prediction models already trained on the data. The prediction models involve three distinct architectures, namely MLP, ResNet, and Transformer.
Main Results: In our experiments, when the membership model achieved an AUC of 0.98, which indicated a clear distinction between OOD data and the training set, we observed that the OOD detection methods had achieved AUC values exceeding 0.95 in distinguishing OOD data. In contrast, in the experiments with subtler changes in data distribution such as selecting OOD data based on ethnicity and age characteristics, many OOD detection methods performed similarly to a random classifier with AUC values close to 0.5. This may suggest a correlation between separability, as indicated by the membership model, and OOD detection performance, as indicated by the AUC of the detection model. This warrants future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2024.105762 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.
View Article and Find Full Text PDFComput Biol Med
December 2024
Diagnostic Imaging Analysis Group, Medical Imaging Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
Artificial Intelligence (AI) models may fail or suffer from reduced performance when applied to unseen data that differs from the training data distribution, referred to as dataset shift. Automatic detection of out-of-distribution (OOD) data contributes to safe and reliable clinical implementation of AI models. In this study, we propose a recognized OOD detection method that utilizes the Mahalanobis distance (MD) and compare its performance to widely known classical methods.
View Article and Find Full Text PDFInt J Med Inform
December 2024
Department of Medical Informatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands; Institute of Logic, Language and Computation, University of Amsterdam, the Netherlands; Pacmed, Amsterdam, the Netherlands. Electronic address:
Background: Machine Learning (ML) models often struggle to generalize effectively to data that deviates from the training distribution. This raises significant concerns about the reliability of real-world healthcare systems encountering such inputs known as out-of-distribution (OOD) data. These concerns can be addressed by real-time detection of OOD inputs.
View Article and Find Full Text PDFComput Med Imaging Graph
December 2024
ICMUB, Université de Bourgogne, Dijon, France. Electronic address:
In real-world scenarios, medical image segmentation models encounter input images that may deviate from the training images in various ways. These differences can arise from changes in image scanners and acquisition protocols, or even the images can come from a different modality or domain. When the model encounters these out-of-distribution (OOD) images, it can behave unpredictably.
View Article and Find Full Text PDFFront Big Data
November 2024
Department of Computer Science, The University of Texas at Dallas, Richardson, TX, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!