As a highly emitted volatile organic compound, toluene significantly contributes to atmospheric pollution and poses high risks to human health. Its anthropogenic source is well understood, while its biosynthesis remains poorly understood, especially by bacterial communities. This research attempted to reveal the temporal changes of bacterial community structure during toluene biosynthesis and identify key bacterial factors using 16S rRNA sequencing gene and machine learning methods. The results showed that toluene biosynthesis by the bacterial consortium nonlinearly increased with phenylacetic acid concentration with the optimal temperature of 25-30 °C and pH of 7-7.5. Diversity and richness of the bacterial communities increased over time, as well as the abundance and composition of phyla (e.g. Bacteroidota and Synergistota), families (e.g. Acidaminococcaceae and Oscillospiraceae), species (e.g. Bacteroides and Parabacteroides), and functional genes (e.g. phenylalanine, tyrosine, and tryptophan biosynthesis and fatty acid metabolism). They were significantly related to toluene biosynthesis, of which the Shannon and Simpson indices and the abundances of Synergistaceae, Bacteroidaceae, and Spirochaetaceae species and functional genes related to metabolic pathways, biosynthesis of secondary metabolites, and alanine aspartate and glutamate metabolism were identified as key factors. Findings of this study contributed to new understandings of the underlying mechanisms of toluene biosynthesis by the bacterial community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.178186 | DOI Listing |
Sci Total Environ
December 2024
School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China. Electronic address:
As a highly emitted volatile organic compound, toluene significantly contributes to atmospheric pollution and poses high risks to human health. Its anthropogenic source is well understood, while its biosynthesis remains poorly understood, especially by bacterial communities. This research attempted to reveal the temporal changes of bacterial community structure during toluene biosynthesis and identify key bacterial factors using 16S rRNA sequencing gene and machine learning methods.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
This study investigates the co-occurrence of per- and polyfluoroalkyl substances (PFASs), petroleum hydrocarbons (TPHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) and their effects on the indigenous microbial communities in soils at a contaminated site with a history of petroleum refinery operations. PFASs concentrations were in the range of 5.65-6.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
CEB - Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.
Benzene, toluene, ethylbenzene, and xylene (BTEX) can be found in marine and estuarine waters due to accidental spills of oil and derivatives, as well as in production water and effluents discharged from petrochemical plants. Addressing the bioremediation of these compounds in saline environments and effluents with elevated salinity levels is imperative. In this study, the halotolerance of Aspergillus niger was assessed by subjecting it to a stepwise increase in salinity, achieved through progressive addition of NaCl from 2 to 30‰ (v/v).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Medicinal and Life Sciences, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea.
Environmental pollutants, particularly volatile organic compounds (VOCs), are associated with various diseases, including atopic dermatitis (AD). However, despite numerous studies on AD, there is a lack of research on the impact of various environmental exposures on mothers and infants. This study, therefore, investigated the effects of maternal exposure to specific VOCs (toluene, xylene, and benzene) on the expression of AD-related genes in mothers and their infants.
View Article and Find Full Text PDFMolecules
November 2024
School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia.
Piperine (PPN) is a natural compound with an anti-inflammation effect and low solubility. Hence, some molecular modifications have improved its solid-state character, including cocrystal formation. However, the salt structure has yet to be widely studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!