Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114.

Biometals

Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.

Published: December 2024

AI Article Synopsis

  • Antibiotic resistance in Acinetobacter baumannii, a common hospital pathogen, is growing, posing serious risks to health care workers and society, driven by both antibiotic overuse and environmental stressors.
  • A study found that exposing A. baumannii to copper stress led to significant increases in resistance to key antibiotics: 8-fold for colistin, 44-fold for ciprofloxacin, and 22-fold for levofloxacin, alongside enhanced biofilm formation.
  • The bacteria exhibited physiological changes, such as higher efflux pump activity and alterations in membrane permeability, with molecular analysis showing increased gene expression related to antibiotic resistance and oxidative stress, indicating adaptation to stressors.

Article Abstract

Increasing antibiotic resistance among the common nosocomial pathogen i.e. Acinetobacter baumannii poses life threat to the health care workers as well as to the society. The dissemination of antibiotic resistance in this pathogen at an alarming rate could be not only due to the overuse of antibiotics but also due to the stress caused by exposure of bacterium to several environmental contaminants in their niches. In the present study, effect of copper stress on augmentation in the antibiotic resistance of A. baumannii MCC 3114 against three clinically used antibiotics was investigated along with the phenotypic and genotypic alterations in the cell. It induced 8, 44 and 22-fold increase in resistance against colistin, ciprofloxacin and levofloxacin, respectively. Moreover, the biofilm formation of adapted culture was significantly enhanced due to a dense EPS around the cell (as revealed by SEM images). The structural changes in EPS were demonstrated by FTIR spectroscopy. The adequate growth of adapted MCC 3114 despite increased level of ROS indicates its persistence in copper and ROS stress. The physiological alterations in cell viz., increased efflux pump activity and decreased membrane permeability was observed. Molecular analysis revealed increased expression of efflux pump related genes, oxidative stress genes, integron and antibiotic resistance genes. In sum, our study revealed that the exposure of the critical pathogen, A. baunmannii to copper in hospital settings and environmental reservoirs can impose adaptive pressure which may lead to genotypic as well phenotypic changes in cell resulting into the augmentation of antibiotic resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-024-00657-3DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
24
augmentation antibiotic
12
mcc 3114
12
acinetobacter baumannii
8
baumannii mcc
8
alterations cell
8
efflux pump
8
resistance
7
antibiotic
6
copper
4

Similar Publications

Comparative phenotypic and proteomic analysis of colistin-exposed .

Germs

September 2024

PhD, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.

Introduction: The emergence of colistin resistance threatens the treatment of infections.

Methods: In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods.

View Article and Find Full Text PDF

Introduction: In the pediatric setting, overprescribing of antibiotics contributes to the rise of multidrug-resistant organisms. Antimicrobial stewardship programs (ASPs) are recommended to optimize antibiotic use and combat resistance. However, the implementation of ASPs in low- and middle-income countries faces several challenges.

View Article and Find Full Text PDF

Fecal microbiota transplantation in severe pneumonia: a case report on overcoming pan-drug resistant infection.

Front Med (Lausanne)

December 2024

Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of Joint Logistics Support Force, Fuzhou, China.

Objective: To evaluate the therapeutic potential of fecal microbiota transplantation (FMT) in treating severe pneumonia patients with concurrent pan-drug resistant infection.

Methods: A case report of a 95-year-old female patient with severe pneumonia, complicated by pan-resistant bacterial infections, is presented. The patient was diagnosed with severe pneumonia caused by COVID-19, along with co-infections of , , , , ESBL-producing pan-drug resistant and pan-resistant .

View Article and Find Full Text PDF

Hospital surfaces are often contaminated with multidrug-resistant pathogenic bacteria that cause healthcare-associated infections and lead to increased mortality and morbidity. There is a need for new alternative antibacterial agents to overcome antibiotic resistance. Azadirachta indica and Simmondsia chinensis have been found to possess antibacterial activity and medicinal value.

View Article and Find Full Text PDF

Purpose: We designed and tested a point of care test panel to detect E.coli and antibiotic susceptibility in urine samples from patients at the point of care in the urological department. The aim of this approach is to facilitate choosing an appropriate antibiotic for urinary tract infections (UTI) at first presentation in the context of increasing antibiotic resistance in uropathogens worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!