Although left ventricular assist devices (LVADs) are an alternative to heart transplantation, their artificial surfaces often lead to serious thrombotic complications requiring high-risk device replacement. Coating blood-contacting surfaces with antithrombogenic endothelial cells is considered an effective strategy for preventing thrombus formation. However, this concept has not yet been successfully implemented in LVADs, as severe cell loss is to be expected, especially on the impeller surface with high prothrombogenic supraphysiological shear stress. This study presents a strategy that exploits the magnetic attraction of the impeller on ECs loaded with iron oxide nanoparticles (IONPs) to minimize shear stress-induced cell detachment from the rotating magnetic impeller while ensuring antithrombogenic EC adhesion, especially as a bridge until they formed their adhesion-promoting matrix. In contrast to polyvinylpyrrolidone (PVP)-coated IONPs, more efficient and safer cell loading is achieved with sodium citrate (Cit)-stabilized IONPs, where incubation with 6.6 µg iron mL-1 Cit-IONPs for 24 h resulting in an average internalization of 23 pg iron per cell. Internalization of Cit-IONP significantly improved cell attraction to the highly magnetic impeller surface without affecting cell viability or antithrombogenic function. This protocol is key for the development of a biohybrid LVAD impeller that can prevent life-threatening thrombosis and hemorrhage in a future clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202408976DOI Listing

Publication Analysis

Top Keywords

iron oxide
8
oxide nanoparticles
8
left ventricular
8
ventricular assist
8
impeller surface
8
magnetic impeller
8
impeller
6
cell
6
citrate-coated iron
4
nanoparticles facilitate
4

Similar Publications

Interaction of zinc oxide nanoparticles with soil colloidal suspensions.

Chemosphere

December 2024

Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia. Electronic address:

The properties of soil colloids determine the interaction with nanoparticles, their behavior, and destiny in the soil environment including soil solutions. This study examines how several properties of soil colloids, including pH, phosphorus content, clay minerals, and iron oxyhydroxides, influence the interaction with zinc oxide nanoparticles (ZnO-nps). For the experimental setup, four different soils were selected from the temperate climate of central Europe, in Slovakia, exhibiting pH values ranging from 4.

View Article and Find Full Text PDF

Soil potentially toxic element (PTE) pollution, especially in karst regions, poses significant ecological risks due to the unique geological features and environmental conditions. This study focuses on the delayed geochemical hazard (DGH) model to assess the progressive risks of cadmium (Cd) and lead (Pb) contamination in the surface soils of karst regions in southwestern China. The study found that Pb and Cd pollution in karst areas presents ecological risks, with the region's high porosity and alkaline soils facilitating the transformation of pollutants from stable to mobile forms.

View Article and Find Full Text PDF

Although left ventricular assist devices (LVADs) are an alternative to heart transplantation, their artificial surfaces often lead to serious thrombotic complications requiring high-risk device replacement. Coating blood-contacting surfaces with antithrombogenic endothelial cells is considered an effective strategy for preventing thrombus formation. However, this concept has not yet been successfully implemented in LVADs, as severe cell loss is to be expected, especially on the impeller surface with high prothrombogenic supraphysiological shear stress.

View Article and Find Full Text PDF

Localized Morphological Modulation of Ultrathin Magnetic Nanosheets via a Strategically Designed Reduction Approach.

Small

December 2024

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.

2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents.

View Article and Find Full Text PDF

Introduction: Efficient extraction of DNA from biological fluids is crucial for applications in molecular biology, forensic science, and clinical diagnostics. However, traditional DNA extraction methods often require costly reagents and lengthy procedures. This study aims to optimize the binding buffer composition for DNA extraction using polyethyleneimine-coated iron oxide nanoparticles (PEI-IONPs), which offer the dual benefits of magnetic separation and high DNA-binding efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!