Background: Embryoid bodies (EBs) are three-dimensional (3D) multicellular cell aggregates that are derived from stem cell and play a pivotal role in regenerative medicine. They recapitulate many crucial aspects of the early stages of embryonic development and is the first step in the generation of various types of stem cells, including neuronal stem cells. Current methodologies for differentiating stem cells into neural embryoid bodies (NEBs) in vitro have advanced significantly, but they still have limitations which necessitate improvement. Photobiomodulation (PBM) a low powered light therapy is a non-invasive technique shown to promote stem cell proliferation and differentiation.
Methods: This in vitro study elucidated the effects of photobiomodulation (PBM) on the differentiation of immortalized adipose-derived stem cells (iADSCs) into NEBs within a 3D cell culture environment. The study utilized PBM at wavelengths of 825 nm, 525 nm, and a combination of both, with fluences of 5 and 10 J/cm. Morphology, viability, metabolic activity, and differentiation following PBM treatment was analysed.
Results: The results revealed that the effects of photobiomodulation (PBM) are dose dependent. PBM, at 825 nm with a fluence of 10 J/cm, significantly enhanced the size of neural embryoid bodies (NEBs), improved cell viability and proliferation, and reduced lactate dehydrogenase (LDH) levels, indicating minimal cell damage. Interestingly, the stem cell marker CD 44 was upregulated at 5 J/cm in all treatment groups at 24 and 96 hpi, CD105 increased with 825 nm at 10 J/cm at 24 hpi, which may be attributed to a heterogeneous cell population within the NEBs. Pax6 expression showed transient activation. Nestin was upregulated at 825 nm with 10 J/cm at 96 hpi, suggesting a promotion of neural precursor populations. GFAP an intermediate filament protein was upregulated at 825 nm at 10 J/cm2 at both 24 and 96 hpi. SOX2, a pluripotency marker, was expressed at 5 J/cm across all wavelengths. Neu N a neuronal nuclei marker was expressed at 5 J/cm in all treatments at 24 hpi and over time the expression was observed in all treatment groups at 10 J/cm.
Conclusion: In conclusion, the application of PBM at 825 nm with a fluence of 10 J/cm during the differentiation of iADSCs into NEBs resulted in optimal differentiation. Notably, the neuronal marker Nestin was significantly upregulated, highlighting the potential of the PBM approach for enhancing neuronal differentiation its promising applications in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662703 | PMC |
http://dx.doi.org/10.1186/s13287-024-04088-2 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFBr J Dermatol
January 2025
Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.
Hum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!