Purpose: A triple lumen iteration of the novel photo-angioplasty drug eluting balloon catheter (DEBc) Lumi-Solve may be compromised by guidewire shadow (GWS)-mediated attenuation of balloon surface drug activation. The current study aimed to design and evaluate a novel triple lumen prototype, designated Lumi-Solve-T, to circumvent these issues.

Methods: Effects of guidewire shadowing (GWS) on vascular smooth muscle cell (VSMC) proliferation was evaluated using the MTT assay. In-silico modelling of GWS in the novel triple lumen design was conducted. Computer-aided design (CAD) and finite element analysis (FEA) contributed to development of a novel triple lumen catheter. 3D printing of rudimentary and refined prototypes of the catheter together with assembly of a novel fibre-optic (FO) complex and ex-vivo evaluation of the triple lumen device, Lumi-Solve T, was also performed.

Results: GW insertion in a parallel triple lumen FO: GW port orientation demonstrated significantly reduced inhibition of VSMC proliferation after 7 days confirming the need for an alternative triple lumen design. In-silico analysis identified a multi-fibre FO sleeve design supported uniform, radial and uninterrupted UV365nm light transmission to the angioplasty balloon surface. FEA confirmed a multi-fibre FO ribbon design afforded a practical method of FO sleeve generation and facilitated a novel hub configuration able to afford a FO ribbon to sleeve transition. 3D printed prototypes demonstrated the utility of the novel design.

Conclusions: A dedicated third port and lumen for the Lumi-Solve FO is required for optimal balloon surface photo-activation. A novel triple lumen design, Lumi-Solve-T, incorporating a ribbon to sleeve FO transition and novel hub design offers a realistic solution to current device limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13239-024-00768-5DOI Listing

Publication Analysis

Top Keywords

triple lumen
36
novel triple
20
balloon surface
12
lumen design
12
novel
10
lumen
10
design
9
triple
9
vsmc proliferation
8
novel hub
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!