Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12672-024-01590-0 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662135 | PMC |
Langenbecks Arch Surg
December 2024
Department of Surgery, TUM Universitätsklinikum Klinikum Rechts der Isar Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
Objective: Splenectomy is regularly performed in total and distal pancreatectomy due to technical reasons, lymph node dissection and radicality of the operation. However, the spleen serves as an important organ for competent immune function, and its removal is associated with an increased incidence of cancer and a worse outcome in some cancer entities (Haematologica 99:392-398, 2014; Dis Colon Rectum 51:213-217, 2008; Dis Esophagus 21:334-339, 2008). The impact of splenectomy in pancreatic cancer is not fully resolved (J Am Coll Surg 188:516-521, 1999; J Surg Oncol 119:784-793, 2019).
View Article and Find Full Text PDFJ Exp Clin Cancer Res
December 2024
The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, 100084, China.
Cancer Cell Int
December 2024
Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Taiwan.
Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Institue of Public Health & Social Sciences(IPH&SS), Khyber Medical University(KMU), Peshawar, Pakistan.
Background: Chronic tobacco use, in any form, induces significant cellular alterations in the oral mucosa. This study investigates four distinct cytomorphological changes in oral mucosal cells among smokeless tobacco users, examining their association across different genders and age groups.
Materials And Methods: This cross-sectional study involved collecting mucosal samples from smokeless tobacco (naswar/snuff) users through consecutive sampling.
Clin Lymphoma Myeloma Leuk
November 2024
Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX.
Background: The sensitivity of reverse-transcription polymerase chain reaction (RT-PCR) is limited for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Chest computed tomography (CT) is reported to have high sensitivity; however, given the limited availability of chest CT during a pandemic, the assessment of more readily available imaging, such as chest radiographs, augmented by artificial intelligence may substitute for the detection of the features of coronavirus disease 2019 (COVID-19) pneumonia.
Methods: We trained a deep convolutional neural network to detect SARS-CoV-2 pneumonia using publicly available chest radiography imaging data including 8,851 normal, 6,045 pneumonia, and 200 COVID-19 pneumonia radiographs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!