In this work, the effects of L- Arginine (L-Arg) insertion on saturated and unsaturated lipid membranes were assessed by fluorescence spectroscopy, dynamic light scattering (DLS) and monolayer measurements. The studied systems were composed by DPPC, 16:0 DietherPC, 16:1 Δ9-CisPC, DPPC:Chol, 16:1 Δ9-CisPC:Chol, and 16:1 Δ9-CisPC:DPPC in the presence of increasing concentrations of L-Arg. The information obtained using fluorescence spectral Laurdan properties indicates that L- Arg produces a decrease in the polarizability of saturated lipids congruent with the increase in vesicle size and area per lipid. However, in unsaturated lipids, the polarizability increases without significant changes in size and area per lipid denoting a different mechanism of insertion. The two opposite effects can be modulated by the saturated and unsaturated ratio and are independent of carbonyl groups. This modulation is damped by cholesterol. The differences in the L-Arg insertion can be explained considering that in the presence of the double bond, L-Arg decreases the organized water in the lipid matrix without expanding the bilayer. Instead, in saturated lipid membranes, L-Arg inserts into the acyl chains dragging water and expanding the membrane area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2024.184405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!