Conductive hydrogels are utilized in flexible sensors due to their high-water content, excellent elasticity, and shape controllability. However, the sharp increase in resistance of this material under enormous strain leads to instability in the sensing process. This study presents a straightforward method for creating a stable, recyclable, hybrid ionic-electronic conductive (HIEC) hydrogel via a simple one-pot strategy using polyvinyl alcohol (PVA), bagasse cellulose nanofibrils (CNF), and graphene(G) with sodium dodecylbenzene sulfonate (SDBS). The SDBS/G hemimicelles are formed through hydrophobic and π-π stacking interactions between SDBS and G, enhancing the dispersibility of G. Then SDBS/G hemimicelles were integrated into a non-covalent cross-linking network from CNF and PVA, which ensures recyclability and stability. The CNF-PVA-Graphene (CPG) hydrogel exhibited high and stable sensing sensitivity (average gauge factor up to 1.99), high conductivity (0.36 S/m), low graphene concentration (0.16 wt%), low detection limit (1 %), and fast response time (0.17 s). The sensor can detect large (wrist and knee) and small (pulse and laryngeal prominence) body movements. After recycling, the hydrogel sensors maintained high conductivity sensitivity (average gauge factor up to 1.01) and good tensile properties (360 % strain). This study introduces a new approach of hybrid conductive biomass-based hydrogel sensors for precisely monitoring human movements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138964 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Central South University, School of Metallurgy and Environment, CHINA.
The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO6) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1:10).
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.
Co-doped ZIF-8 as a water-stable visible light photocatalyst was prepared by using a one-pot, fast, cost-effective, and environmentally friendly method. The band structure of ZIF-8 was tuned through the incorporation of different percentages of cobalt to attain an optimal band gap ( ) that enables the activation of ZIF-8 under visible light and minimizes the recombination of photogenerated charge carriers. A magnetic composite of Co-doped ZIF-8 was also synthesized to facilitate catalyst recycling and reusability through the application of an external magnetic field.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
The separation and purification of acetylene from the light hydrocarbon gas mixtures is considered as one of the most industrially challenging task for the production of fine chemicals. Though metal-organic frameworks (MOFs) are promising candidates for such separation and offer a cost and energy-efficient pathway, achieving the trade-off between sorption capacity and separation selectivity along with framework robustness is a daunting task and demands effective design. Herein, a new 3D chemically stable MOF, IITKGP-24 (stable over a wide range of aqueous pH solution, pH = 2-12) is developed, displaying excellent separation selectivity of 13.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
College of Chemistry, Jilin University, 130012, Changchun, China. Electronic address:
Acetylcholinesterase (AChE) and AChE inhibitors play critical roles in the early diagnosis and treatment of Alzheimer's disease (AD). Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform was constructed for both AChE activity monitoring and AChE inhibitor screening by exploring a Cu (I) compound, CuI (SR) (R = CHCHNH), as a fluorescent probe. In comparison of most other fluorescent probes, CuI (SR) presented exceptional stability against pH, temperature, UV irradiation, redox agents, and metal ions, as well as good recyclability due to its unique chemical structure.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.
Direct recycling technology can effectively solve the environmental pollution and resource waste problems caused by spent lithium-ion batteries. However, the repaired LiNiCoMnO (NCM) black mass by direct recycling technology shows an unsatisfactory cycle life, which is attributed to the formation of spinel/rock salt phases and rotational stacking faults caused by the in-plane and out-of-plane migration of transition metal (TM) atoms during charge/discharge. Herein, local lattice stress is introduced into the regenerated cathode during repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!