A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nesfatin-1 is involved in hyperbaric oxygen-mediated therapeutic effects in high fat diet-induced hyperphagia in mice. | LitMetric

AI Article Synopsis

  • Obesity is a significant global health concern, and safe treatments are needed.
  • The study explored hyperbaric oxygen (HBO) therapy as a potential method to reduce overeating and high energy intake in mice fed a high-fat diet.
  • Results showed that HBO treatment decreased food intake and altered brain activity linked to hunger regulation, potentially involving the nesfatin-1 peptide and the melanocortin system.

Article Abstract

Obesity is a worldwide health issue. Effective and safe methods for obesity management are highly desirable. In the current study, hyperbaric oxygen (HBO) treatment was investigated as a potential treatment against obesity-associated hyperphagia and hyperenergy intake. Diet induced obesity (DIO) mice model was established with high fat diet (HFD) feeding, HBO was then co-administered. Food and energy intake were assessed with nocturnal food intake assay. Immunohistochemistry for c-Fos was performed for neuronal activation in arcuate nucleus (ARC), paraventricular nucleus of hypothalamus (PVN) and lateral parabrachial nucleus (LPBN) of brain. Additionally, enzyme-linked immunosorbent assay (ELISA) in serum and immunofluorescence in LPBN were performed. Results indicated that HBO co-treatment effectively decreased food and energy intake in DIO mice, reverted the abnormal neuronal activation in the ARC and PVN, and enhanced both peripheral and central nesfatin-1 peptide levels without affecting serum leptin levels. While SHU9119 microinjection in LPBN effectively abolished the beneficial effects of HBO on body weight, visceral fat, nocturnal feeding and energy intake in DIO mice. In conclusion, HBO treatment could effectively protect against HFD-induced increase of food and energy intake, which is associated with its central effects against abnormal neuronal activation in ARC and PVN and enhanced peptide levels of nesfatin-1 both centrally and peripherally. The melanocortin system downstream of nesfatin-1 may exert a potential effect in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2024.171336DOI Listing

Publication Analysis

Top Keywords

energy intake
16
dio mice
12
food energy
12
neuronal activation
12
high fat
8
hbo treatment
8
intake dio
8
abnormal neuronal
8
activation arc
8
arc pvn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!