A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accelerating antimicrobial peptide design: Leveraging deep learning for rapid discovery. | LitMetric

AI Article Synopsis

  • Antimicrobial peptides (AMPs) are essential for combating infections, prompting the need for new, more effective AMPs and leveraging machine learning to enhance their development.
  • Machine learning and deep learning techniques were applied to predict the effectiveness of 1,360 peptide sequences against the Gram-negative bacterium Escherichia coli, yielding accuracy rates of 74% and 92.9% for two different methodologies.
  • This research not only shows promising results for E. coli but also sets the groundwork for future applications in other antimicrobial, antiviral, and anticancer peptide discoveries, potentially saving time and costs in drug development.

Article Abstract

Antimicrobial peptides (AMPs) are excellent at fighting many different infections. This demonstrates how important it is to make new AMPs that are even better at eliminating infections. The fundamental transformation in a variety of scientific disciplines, which led to the emergence of machine learning techniques, has presented significant opportunities for the development of antimicrobial peptides. Machine learning and deep learning are used to predict antimicrobial peptide efficacy in the study. The main purpose is to overcome traditional experimental method constraints. Gram-negative bacterium Escherichia coli is the model organism in this study. The investigation assesses 1,360 peptide sequences that exhibit anti- E. coli activity. These peptides' minimal inhibitory concentrations have been observed to be correlated with a set of 34 physicochemical characteristics. Two distinct methodologies are implemented. The initial method involves utilizing the pre-computed physicochemical attributes of peptides as the fundamental input data for a machine-learning classification approach. In the second method, these fundamental peptide features are converted into signal images, which are then transmitted to a deep learning neural network. The first and second methods have accuracy of 74% and 92.9%, respectively. The proposed methods were developed to target a single microorganism (gram negative E.coli), however, they offered a framework that could potentially be adapted for other types of antimicrobial, antiviral, and anticancer peptides with further validation. Furthermore, they have the potential to result in significant time and cost reductions, as well as the development of innovative AMP-based treatments. This research contributes to the advancement of deep learning-based AMP drug discovery methodologies by generating potent peptides for drug development and application. This discovery has significant implications for the processing of biological data and the computation of pharmacology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661626PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315477PLOS

Publication Analysis

Top Keywords

deep learning
12
antimicrobial peptide
8
antimicrobial peptides
8
machine learning
8
learning
5
peptides
5
accelerating antimicrobial
4
peptide
4
peptide design
4
design leveraging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!