Background: RPN1, also known as ribophorin I (RPN1), is a type I transmembrane protein that plays an important role in glycosylation. However, the effects of RPN1 on cancer progression and immune evasion in breast cancer (BC) have not been identified.
Materials And Methods: The expression of RPN1 was evaluated using RT-qPCR and immunohistochemistry (IHC). The effects of RPN1 on tumor cells were assessed using RT-qPCR, western blotting, flow cytometry, Cell Counting Kit 8 (CCK-8), colony formation assays, and in vivo experiments. The mechanism by which RPN1 modifies programmed death ligand-1 (PD-L1) and the tumor microenvironment was examined by RT-qPCR, western blotting, co-immunoprecipitation (Co-IP), and flow cytometry. The influence of the transcription factor YY1 on RPN1 expression was revealed using bioinformatics analysis, RT-qPCR, and dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays.
Results: RPN1 is aberrantly expressed in triple-negative breast cancer (TNBC) cells, correlating with increased proliferation and poor prognosis. RPN1 mediates the post-translational modification of PD-L1, enhancing its glycosylation and stability, thus facilitating PD-L1-mediated immune escape and tumor growth. The deletion of RPN1 improves the TNBC microenvironment and enhances the efficacy of anti-PD-1 therapy. Additionally, we uncovered a novel regulatory axis involving YY1/RPN1/YBX1 in PD-L1 regulation, affecting TNBC growth and metastasis.
Conclusions: Our preliminary study reveals that targeting RPN1 promotes immune suppression, providing a new potential immunotherapy strategy for TNBC. However, further research is necessary to fully elucidate and understand the specific mechanisms of RPN1 in TNBC and its potential for clinical application .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/JS9.0000000000002164 | DOI Listing |
Pharmaceutics
December 2024
College of Pharmacy, Xinjiang Second Medical College, Karamay 834000, China.
, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
To analyze the role of disulfidptosis in ulcerative colitis (UC), large-scale datasets combined with weighted gene co-expression network analysis (WGCNA) and machine learning were utilized and analyzed. When the hub genes that are associated with UC disease phenotypes and have predictive performance were identified, immune cell infiltration and the CeRNA network were constructed, the role of hub genes in UC pathogenies and biotherapy were investigated, and molecular docking studies and mice-verified tests were carried out to further explore the potential core genes and potential target. Finally, we found 21 DRGs involved in UC pathogenesis, including SLC3A2, FLNA, CAPZB, TLN1, RPN1, etc.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Public Health, Suzhou Medicine College of Soochow University, Jiangsu, Suzhou, China.
Introduction: Cancer's inherent heterogeneity, marked by diverse genetic and molecular alterations, presents significant challenges for developing effective treatments. One such alteration is the regulation of disulfidoptosis, a recently discovered programmed cell death pathway. RPN1, a key regulator associated with disulfidoptosis, may influence various aspects of tumor biology, including immune evasion and cellular senescence.
View Article and Find Full Text PDFInt J Surg
December 2024
Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Cell Mol Life Sci
December 2024
Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!