Rhabdomyolysis (RM)-induced acute kidney injury (AKI) involves the release of large amounts of iron ions from excess myoglobin in the kidneys, which mediates the overproduction of reactive species with the onset of iron overload via the Fenton reaction, thus inducing ferroptosis and leading to renal dysfunction. Unfortunately, there are no effective treatments for AKI other than supportive care. Herein, we developed a multifunctional nanoplatform (MPD) by covalently bonding melanin nanoparticles (MP NPs) to deferoxamine. The nanoplatform has good dispersion and physiological stability, excellent chelating performance to iron ions, and broad-spectrum reactive species scavenging activity. Furthermore, cellular experiments showed that the NPs possessed high biocompatibility, antiapoptotic activity, antioxidant properties, and strong scavenging capacity of Fe to mitigate iron overload, protecting the intracellular mitochondria from oxidative stress. Meanwhile, the intrinsic photoacoustic imaging capability of melanin allows the real-time monitoring of MPD NPs' target uptake and metabolic behavior in healthy and AKI mice. Most importantly, MPD NPs led to downregulation of the antioxidant pathway by targeting ferroptosis, thus effectively rescuing renal function in vivo, mitigating oxidative stress and inflammatory responses, and inhibiting renal tubular cell apoptosis. The nanoplatform offers a novel therapeutic strategy for RM-induced AKI.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c14815DOI Listing

Publication Analysis

Top Keywords

targeting ferroptosis
8
acute kidney
8
kidney injury
8
iron ions
8
reactive species
8
iron overload
8
oxidative stress
8
iron
5
melanin-deferoxamine nanoparticles
4
nanoparticles targeting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!