AI Article Synopsis

  • Previous research has highlighted the importance of hindlimb muscle morphology in locomotion, but the role of forelimb muscle structure in motor outputs and sensory signal generation is less understood.
  • This study measured the morphological features of 46 forelimb muscles in cats and analyzed their function during different types of locomotion, revealing significant relationships between muscle characteristics and force production.
  • Results indicate that forelimb muscle morphology plays a vital role in controlling lateral stability and turning movements, emphasizing its importance beyond just propulsion in locomotion.

Article Abstract

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA) and fascicle length. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in seven and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibres (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii length afferents matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion. KEY POINTS: Little is known about the role of forelimb muscle morphology in producing motor outputs and generating somatosensory signals. This information is needed to understand the contributions of forelimbs in locomotor control. We measured morphological characteristics of 46 muscles from cat forelimbs, recorded cat walking mechanics and electromyographic activity, and computed patterns of moment arms, length, velocity, activation, and force of forelimb muscles, as well as length- and force-dependent afferent activity during walking. We demonstrated that moment arms, physiological cross-sectional area and fascicle length of forelimb muscles contribute substantially to muscle force production and proprioceptive activity, to the regulation of locomotor cycle phase transitions and to control of lateral stability. The obtained information can guide the development of biologically accurate neuromechanical models of quadrupedal locomotion for exploring and testing novel methods of treatments of central nervous system pathologies by modulating activities in neural pathways controlling forelimbs/arms.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP287448DOI Listing

Publication Analysis

Top Keywords

forelimb muscles
16
role forelimb
12
morphological characteristics
12
fascicle length
12
forelimb muscle
12
forelimb
10
forelimb morphology
8
sensorimotor functions
8
functions locomotion
8
motor outputs
8

Similar Publications

Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls.

View Article and Find Full Text PDF

The transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs.

View Article and Find Full Text PDF

First report of iron-overload myopathy due to secondary hemochromatosis in a dog.

J Vet Sci

December 2024

Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.

Importance: Hemochromatosis is rare in domestic animals, and iron-induced myopathy has not been reported in veterinary medicine. This case is the first report of iron-overload myopathy owing to hemochromatosis in a dog.

Case Presentation: A 9-year-old spayed female Donggyeong dog presented with severe forelimb lameness.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research has highlighted the importance of hindlimb muscle morphology in locomotion, but the role of forelimb muscle structure in motor outputs and sensory signal generation is less understood.
  • This study measured the morphological features of 46 forelimb muscles in cats and analyzed their function during different types of locomotion, revealing significant relationships between muscle characteristics and force production.
  • Results indicate that forelimb muscle morphology plays a vital role in controlling lateral stability and turning movements, emphasizing its importance beyond just propulsion in locomotion.
View Article and Find Full Text PDF

Future spinal reflex is embedded in primary motor cortex output.

Sci Adv

December 2024

Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan.

Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!