We propose a robust framework for quantitatively comparing model-predicted and experimentally measured strain fields in the human brain during harmonic skull motion. Traumatic brain injuries (TBIs) are typically caused by skull impact or acceleration, but how skull motion leads to brain deformation and consequent neural injury remains unclear and comparison of model predictions to experimental data remains limited. Magnetic resonance elastography (MRE) provides high-resolution, full-field measurements of dynamic brain deformation induced by harmonic skull motion. In the proposed framework, full-field strain measurements from human brain MRE in vivo are compared to simulated strain fields from models with similar harmonic loading. To enable comparison, the model geometry and subject anatomy, and subsequently, the predicted and measured strain fields are nonlinearly registered to the same standard brain atlas. Strain field correlations ( ), both global (over the brain volume) and local (over smaller sub-volumes), are then computed from the inner product of the complex-valued strain tensors from model and experiment at each voxel. To demonstrate our approach, we compare strain fields from MRE in six human subjects to predictions from two previously developed models. Notably, global values are higher when comparing strain fields from different subjects ( ~0.6-0.7) than when comparing strain fields from either of the two models to strain fields in any subject. The proposed framework provides a quantitative method to assess similarity (and to identify discrepancies) between model predictions and experimental measurements of brain deformation and thus can aid in the development and evaluation of improved models of brain biomechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-024-01913-8DOI Listing

Publication Analysis

Top Keywords

strain fields
28
brain deformation
16
human brain
12
skull motion
12
brain
10
strain
10
measured strain
8
harmonic skull
8
comparison model
8
model predictions
8

Similar Publications

Foot-and-mouth disease virus (FMDV), the causative agent of the foot-and-mouth disease of cattle population possesses a rapid evolutionary rate. In Bangladesh, the first circulation of the O/ME-SA/SA-2018 lineage as a novel sublineage, MYMBD21 was reported from our laboratory. The first whole genome sequence of an isolate, BAN/MY/My-466/2021 (shortly named My-466) of the SA-2018 lineage is characterized and represented in this study.

View Article and Find Full Text PDF

Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae.

ISME J

January 2025

Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, 13288, Marseille Cedex 9, France.

The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae.

View Article and Find Full Text PDF

Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!