Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Plasmid, as a mobile genetic element, plays a pivotal role in facilitating the transfer of traits, such as antimicrobial resistance, among the bacterial community. Annotating plasmid-encoded proteins with the widely used Gene Ontology (GO) vocabulary is a fundamental step in various tasks, including plasmid mobility classification. However, GO prediction for plasmid-encoded proteins faces 2 major challenges: the high diversity of functions and the limited availability of high-quality GO annotations.
Results: In this study, we introduce PlasGO, a tool that leverages a hierarchical architecture to predict GO terms for plasmid proteins. PlasGO utilizes a powerful protein language model to learn the local context within protein sentences and a BERT model to capture the global context within plasmid sentences. Additionally, PlasGO allows users to control the precision by incorporating a self-attention confidence weighting mechanism. We rigorously evaluated PlasGO and benchmarked it against 7 state-of-the-art tools in a series of experiments. The experimental results collectively demonstrate that PlasGO has achieved commendable performance. PlasGO significantly expanded the annotations of the plasmid-encoded protein database by assigning high-confidence GO terms to over 95% of previously unannotated proteins, showcasing impressive precision of 0.8229, 0.7941, and 0.8870 for the 3 GO categories, respectively, as measured on the novel protein test set.
Conclusions: PlasGO, a hierarchical tool incorporating protein language models and BERT, significantly expanded plasmid protein annotations by predicting high-confidence GO terms. These annotations have been compiled into a database, which will serve as a valuable contribution to downstream plasmid analysis and research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659980 | PMC |
http://dx.doi.org/10.1093/gigascience/giae104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!