Pannexin 1 (PANX1) is a member of a topologically related and stoichiometrically diverse family of large pore membrane ion channels that support the flux of signaling metabolites (e.g., ATP) and fluorescent dyes. High-resolution structural analyses have identified PANX1 as a heptamer despite early evidence suggesting that it might be a hexamer. To determine if PANX1 channel activity is supported in both hexameric and heptameric conformations, we examined properties of concatenated PANX1 constructs comprising either six or seven subunits with intact or truncated C-termini (the latter to mimic caspase-cleavage activation). In whole-cell recordings from PANX1-deleted cells, the C-tail-truncated hexameric and heptameric concatemers generated outwardly rectifying PANX1-like currents only after severing the intersubunit linkers. Surprisingly, α1D adrenoceptor stimulation activated constructs with intact or truncated C-tails, even without linker cleavage. In inside-out patches from PANX1-deleted cells, linker cleavage activated C-tail truncated channels derived from either hexameric or heptameric concatemers. The heptamers presented peak unitary conductance and mean open time that was similar to channels assembled from the expression of unlinked single PANX1 subunits and greater than from the hexamers. In addition, the linker-cleaved heptameric concatemers supported greater PANX1-dependent ATP release and TO-PRO-3 uptake than the corresponding hexamers. These data indicate that functional PANX1 channels can be obtained in either hexameric or heptameric conformations and suggest that the distinct unitary properties of heptameric channels are more conducive to large molecule permeation by PANX1; they also suggest that there are distinct structural requirements for C-tail cleavage and receptor-mediated PANX1 activation mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.202413676DOI Listing

Publication Analysis

Top Keywords

hexameric heptameric
20
heptameric concatemers
12
panx1
8
heptameric conformations
8
intact truncated
8
panx1-deleted cells
8
linker cleavage
8
heptameric
7
hexameric
5
channels
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!