In a recently developed associative rehabilitative brain computer interface system, electroencephalography is used to identify the most active phase of the motor cortex during attempted movement and deliver precisely timed peripheral stimulation during training. This approach has been demonstrated to facilitate corticospinal excitability and functional recovery in patients with lower limb weakness following stroke. The current study expands those findings by investigating changes in corticospinal excitability following the associative BCI intervention in post-stroke patients with upper limb weakness. In a randomized controlled trial, 24 subacute stroke patients, subdivided into an intervention group and a "sham" control group, performed 30 wrist extensions. The intervention comprised 30 pairings of single peripheral nerve stimulation at the motor threshold, timed so that the generated afferent volley arrived at the motor cortex during the peak negativity of the MRCP, which was identified using EEG. The sham group underwent the same intervention, though the intensity of the nerve stimulation was below the perception threshold. Immediately after training, patients in the associative group exhibited significantly larger amplitudes of muscular evoked potentials, compared to pre-training measurements in response to transcranial magnetic stimulation. These changes persisted for at least 30 minutes, and were not observed in the sham group. We demonstrate that motor evoked potential amplitudes increased significantly following paired associative BCI training targeting upper limb muscles in subacute stroke patients, which is in line with results from lower limb muscles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00452.2024 | DOI Listing |
Exp Brain Res
January 2025
Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.
The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).
View Article and Find Full Text PDFExp Physiol
January 2025
Strength and Conditioning Research Laboratory, College of Physical Education, University of Brasília, Brasília, Brazil.
This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOW); (3) moderate velocity dynamic stretching (70 beats/min; MOD); and (4) fast velocity dynamic stretching (90 beats/min; FAST). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFSci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
J Mot Behav
December 2024
Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada.
This review verified the extent, variety, quality and main findings of studies that have tested the neurophysiological and clinical effects of muscle tendon vibration (VIB) in individuals with sensorimotor impairments. The search was conducted on PubMed, CINAHL, and SportDiscuss up to April 2024. Studies were selected if they included humans with neurological impairments, applied VIB and used at least one measure of corticospinal excitability using transcranial magnetic stimulation (TMS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!