We study the lubricated contact of sliding soft surfaces that are locally patterned but globally cylindrical, held together under an external normal force. We consider gently engineered sinusoidal patterns with small slopes. Three dimensionless parameters govern the system: a speed, and the amplitude and wavelength of the pattern. Using numerical solutions of the Reynolds lubrication equation, we investigate the effects of these dimensionless parameters on key variables such as contact pressure and the coefficient of friction of the lubricated system. For small pattern amplitudes, the coefficient of friction increases with the amplitude. However, our findings reveal that increasing pattern amplitude beyond a critical value can decrease the friction coefficient, a result that contradicts conventional intuition and classical studies on the lubrication of rigid surfaces. For very large amplitudes, we show that the coefficient of friction drops even below the corresponding smooth case. We support these observations with a combination of perturbation theory and physical arguments, identifying scaling laws for large and small speeds, and for large and small pattern amplitudes. This study provides a quantitative understanding of friction in the contact of soft, wet objects and lays theoretical foundations for incorporating the friction coefficient into haptic feedback systems in soft robotics and haptic engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm01018c | DOI Listing |
Materials (Basel)
December 2024
Institute of Technology and Materials Engineering, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia.
Friction is an unfavourable phenomenon in deep-drawing forming processes because it hinders the deformation processes and causes deterioration of the surface quality of drawpieces. One way to reduce the unfavourable effect of friction in deep-drawing processes is to use lubricants with the addition of hard particles. For this reason, this article presents the results of friction tests of dual-phase HCT600X+Z steel sheets using the flat die strip drawing test.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are higher than those of the TC4 alloy. The critical ignition conditions for both alloys increase with thickness, while they decrease with increasing rotational speed, oxygen concentration, and oxygen pressure.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Manufacturing Engineering, Technical University from Cluj-Napoca, 400001 Cluj-Napoca, Romania.
The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China.
The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
Corn stalk fibers extracted from cattle manure (CSFCM) represent a unique class of natural fibers that undergo biological pre-treatment during ruminant digestion. This study systematically investigates the optimization of CSFCM-reinforced friction materials through controlled silane treatment (2-10 wt.%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!