Differential effects of EPA and DHA on aging-related sarcopenia in mice and possible mechanisms involved.

Food Funct

Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.

Published: December 2024

Sarcopenia frequently occurs with aging and leads to major adverse impacts in elderly individuals. The protective effects of omega-3 polyunsaturated fatty acids against aging-related sarcopenia have been demonstrated; however, the effect and underlying mechanism of EPA or DHA alone remain inconclusive. Hence, the present study was aimed to clarify the differential effects and possible mechanisms of EPA and DHA on aging-related sarcopenia. In this study, two-month-old and eighteen-month-old male C57BL/6J mice were fed with an AIN-93M diet and an AIN-93M diet containing 1% EPA or 1% DHA for 24 weeks, respectively. The results revealed that EPA and DHA supplementation effectively alleviated the decline in grip strength, skeletal muscle mass, and myofiber cross-sectional areas in aged mice, with EPA exhibiting a better effect against aging-related sarcopenia than DHA. The ROS scavenging role of EPA in aged skeletal muscle was also superior to that of DHA. Additionally, EPA showed a stronger role in improving protein turnover and myogenesis in aged skeletal muscle, as evidenced by suppressing the activation of FoxO3a and NF-κB, blunting the expression levels of muscle atrophy markers MAFbx and MuRF1, activating the PI3K/Akt/mTOR signaling pathway, and elevating MyoD expression. Moreover, EPA also revealed a better effect on inhibiting mitochondria- and endoplasmic reticulum stress-mediated apoptosis in aged skeletal muscle. Furthermore, EPA manifested a more pronounced effect on improving mitochondrial damage of aged skeletal muscle than DHA, and the reason might be due to its superior capability of regulating mitochondrial quality control, as clearly shown by enhancing mitochondrial biogenesis through the AMPK/PGC-1α-dependent pathway, restraining the loss of mitochondrial fusion and fission proteins including Opa1, Mfn2, and Fis1, and promoting mitophagy the PINK1/Parkin-dependent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4fo04341cDOI Listing

Publication Analysis

Top Keywords

epa dha
20
skeletal muscle
20
aging-related sarcopenia
16
aged skeletal
16
epa
10
differential effects
8
dha
8
dha aging-related
8
ain-93m diet
8
muscle
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!