Background: Ferroptosis is a programmed cell death caused by iron-dependent accumulation and cellular lipid peroxides, which is different from apoptosis and pyroptosis. This study investigated the possible effect of ferroptotic response in the pathogenesis of infantile hemangioma (IH).
Methods And Results: The staining level of 4-hydroxynonenal (4-HNE), the marker of ferroptotic cells, was significantly increased in the involutive IH samples compared with the proliferative samples (9 proliferative versus 12 involutive lesions, =0.0152). By contrast, the expression of glutathione peroxidase 4 (GPX4), a key enzyme regulating ferroptotic resistance, was significantly increased in the involutive IH samples. Meanwhile, the GPX4 was richly expressed in macrophages of IH. The data from in vitro study showed that the mRNA (=0.0002) and protein (=0.0385) expression levels of GPX4 were significantly upregulated in macrophages cultured with hemangioma-derived stem cells conditional medium (HemSC-CM). Mechanistically, HemSC-CM promoted the expression of GPX4 in macrophages (=0.0482) by increasing nuclear factor erythroid 2-related factor 2 translocation to the nucleus (=0.0026). Additionally, inhibition of GPX4 or inducing ferroptosis in macrophages could inhibit progression of lesion in IH nude mice mode.
Conclusions: Hemangioma-derived stem cells (HemSCs) could promote macrophage ferroptotic resistance through upregulating expression of GPX4, which is required for the progression of IH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/JAHA.124.034261 | DOI Listing |
Theranostics
January 2025
Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Pharmacy, West China Xiamen Hospital of Sichuan University, Xiamen, China.
Breast cancer is one of the most prevalent malignancies affecting women worldwide, with its incidence increasingly observed in younger populations. In recent years, drug resistance has emerged as a significant challenge in the treatment of breast cancer, making it a central focus of contemporary research aimed at identifying strategies to overcome this issue. Growing evidence indicates that inducing ferroptosis through various mechanisms, particularly by inhibiting System Xc, depleting glutathione (GSH), and inactivating glutathione peroxidase 4 (GPX4), holds great potential in overcoming drug resistance in breast cancer.
View Article and Find Full Text PDFFront Pharmacol
December 2024
The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
Backgrounds: Ferroptosis is a form of regulated cell death. The accumulation of iron in the brain is linked to trigger ferroptosis after an ischaemic stroke (IS). Naoqing formula (NQ) is a traditional Chinese medicine metabolites with the clinical function of activating blood circulation, which is applied to treat IS clinically in China.
View Article and Find Full Text PDFRedox Biol
December 2024
Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India. Electronic address:
A significant clinical challenge in patients with colorectal cancer (CRC), which adversely impacts patient survival, is the development of therapy resistance leading to a relapse. Therapy resistance and relapse in CRC is associated with the formation of lipid droplets (LD) by stimulating de novo lipogenesis (DNL). However, the molecular mechanisms underlying the increase in DNL and the susceptibility to DNL-targeted therapies remain unclear.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology Wuhan University Wuhan China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!