The tetrapyrrolic macrocycle as a scaffold for various chemical modifications provides broad opportunities for the preparation of complex multifunctional conjugates suitable for binary antitumor therapies. Typically, illumination with monochromatic light triggers the photochemical generation of reactive oxygen species (ROS) (photodynamic effect). However, more therapeutically valuable effects can be achieved upon photoactivation of tetrapyrrole derivatives. Herein we report the novel porphyrin-based complexes of transition metals with isocyanide and carbonyl ligands. Synthesis of complexes presumed the use of 5-(-isocyanophenyl)-10,15,20-triphenylporphyrin as a ligand in reactions with metal carbonyl complexes, M(CO) (M = Cr, Mo, W), Re(CO) and Re(CO)Cl. Based on these complexes and isocyanocarborane, the heteroleptic carbonyl complexes with porphyrin and carborane isocyanide ligands were prepared. In cell-free systems, the new compounds retained photochemical characteristics of the parental porphyrin derivative, such as triplet state formation and ROS generation, upon light-induced activation. In the cell culture, the carborane-containing derivatives demonstrated a more pronounced intracellular accumulation than their nonboronated counterparts. As expected, illumination at the Soret band (405 nm) of cells loaded with the new complexes caused photodynamic cell damage. In contrast, illumination at 530 nm instead initiated the release of carbon oxide (CO) followed by cell death independently of the photodynamic effect. Light-induced CO release was analyzed using second derivatives of UV-Vis spectra and our originally developed pectrophotometric elimition of hotoinduced ide reactions (SNAPS) method. The yield of CO release decreased in the raw depending on metals in the carbonyl moiety: Mo ≥ Cr > W > Re ≥ Re. Overall, our novel metal carbonyl complexes with porphyrin and carborane isocyanide ligands emerge as potent bi-functional conjugates for combined photodynamic and photoinducible CO-releasing antitumor agents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4bm01293cDOI Listing

Publication Analysis

Top Keywords

carbonyl complexes
16
metal carbonyl
12
complexes porphyrin
12
porphyrin carborane
12
carborane isocyanide
12
isocyanide ligands
12
complexes
8
carbon oxide
8
carbonyl
5
porphyrin
4

Similar Publications

Transition metal carbonyl and transition metal dinitrogen are fundamental chemical complexes in many important biological and catalytic processes. Interestingly, binding between a transition metal (TM) atom and carbonyl or dinitrogen results in spin state change. However, no study has evaluated the spin-orbit (SO) effect along the association pathway of any TM-CO or TM-N bond.

View Article and Find Full Text PDF

Development of new adsorbents for the efficient removal of organic pollutants from water is one of the most emerging environmental issues. Current studies in this field focus on improving the adsorption capacity of various materials and/or broadening the pH range in which the adsorbents can efficiently remove target pollutants. In this study, we designed bifunctional hyper-cross-linked polymers (HCPs) containing both carbonyl and amine species to investigate the effect of amine functional groups on the efficiency of adsorptive removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water.

View Article and Find Full Text PDF

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands HL and HL were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. HL was obtained from the reaction of carbohydrazide and salicylaldehyde, while HL was prepared by condensing 4-methoxysalicylaldehyde with thiocarbohydrazide.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!