Multibit/analog artificial synapses are in demand for neuromorphic computing systems. A problem hindering the utilization of memristive artificial synapses in commercial neuromorphic systems is the rigidity of their functional parameters, plasticity in particular. Here, we report fabricating polycrystalline rutile-based memristive memory segments with Ti/poly-TiO/Ti structures featuring multibit/analog storage and the first use of a tunable DC-biasing for synaptic plasticity adjustment from short- to long-term. The unbiased device is of short-term plasticity, positive biasing increases the remanence of the recorded events and the device gains long-term plasticity at a specific biasing level determined from the device geometry. The adjustability of the biasing field provides an additional degree of freedom allowing performance tuning; the paired-pulse facilitation index of the device is tuned by the biasing level adjustment providing further functional versatility. An appropriately biased segment provides more than 10 synaptic weight levels linearly depending on the number and duration of the stimulating spikes. The relationship with spike magnitude is exponential. The experimentally determined nonlinearity coefficient of the biased device for 50 potentiating spikes is comparable to the best published data. The spike-timing-dependent plasticity determined experimentally for the biased device in its long-term plasticity mode fits the mathematical relationship developed for biological synapses. Fabricated on a titanium metal foil, the produced memristors are sturdy and flexible making them suitable for wearable and implantable intelligent electronics. Our findings are anticipated to raise the potential of forming artificial synapses out of polycrystalline metal oxide thin films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03464c | DOI Listing |
Int J Mol Sci
December 2024
Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China.
In modern computing, the Von Neumann architecture faces challenges such as the memory bottleneck, hindering efficient processing of large datasets and concurrent programs. Neuromorphic computing, inspired by the brain's architecture, emerges as a promising alternative, offering unparalleled computational power while consuming less energy. Artificial synaptic devices play a crucial role in this paradigm shift.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.
Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Microdevice Engineering, Korea University, Seoul 02841, Republic of Korea.
Two-dimensional (2D) layered materials have recently gained significant attention and have been extensively studied for their potential applications in neuromorphic computing, where they are used to mimic the functions of the human brain. Their unique properties, including atomic-level thickness, exceptional mechanical stability, and tunable optical and electrical characteristics, make them highly versatile for a wide range of applications. In this review, we offer a comprehensive analysis of 2D material-based memristors.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA.
The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!