Recent studies suggest that glucocorticoid receptor (GR) activation can cause enzalutamide resistance in advanced prostate cancer (PCa) via functional bypass of androgen receptor (AR) signaling. However, the specific molecular mechanism(s) driving this process remain unknown. We have previously reported that the transcription factor TBX2 is over-expressed in castrate-resistant prostate cancer (CRPC). In this study, using human PCa and CRPC cell line models, we demonstrate that TBX2 downregulates AR and upregulates GR through direct transcriptional regulation. TBX2 also activated the GR via TBX2-GR protein-protein interactions. Together, TBX2-driven repression of AR and activation of GR resulted in enzalutamide resistance. Our laboratory findings are supported by clinical samples, which show a similar and consistent pattern of transcriptional activity among TBX2, AR and GR across patient cohorts. Notably, we report that SP2509, an allosteric inhibitor of the demethylase-independent function of LSD1 (a TBX2-interacting protein in the COREST complex) disrupts both TBX2-LSD1 and TBX2-GR protein-protein interactions, revealing a unique mode of SP2509 action in CRPC. Taken together, our study identifies the TBX2-driven AR- to GR- signaling switch as a molecular mechanism underlying enzalutamide resistance and provides key insights into a potential therapeutic approach for targeting this switch by disrupting TBX2-GR and TBX2-LSD1 protein-protein interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-024-03252-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!