A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mithramycin targets head and neck cancer stem cells by inhibiting Sp1 and UFMylation. | LitMetric

Mithramycin targets head and neck cancer stem cells by inhibiting Sp1 and UFMylation.

Cancer Cell Int

Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia.

Published: December 2024

Background: The development of resistance to therapy is characteristic of head and neck squamous cell carcinoma (HNSCC), the 6th most common cancer, and is often attributed to cancer stem cells (CSCs). By proteomic approach, we determined that UFMylation plays an important role in HNSCC CSCs. Because of the necessity for innovative therapeutic strategies, we explore here the therapy targeting CSCs based on mithramycin and its inhibitory effect on Sp1 transcription factor, UFMylation, and CSCs survival and stemness.

Methods: HNSCC-derived cancer cell lines Detroit 562, FaDu, and Cal27, and tumor spheres are used as a model for CSCs. Proteomic analysis identified the importance of the UFMylation pathway in CSCs which we further studied by bioinformatics, western blot, immunocytochemistry, and cytotoxicity assay.

Results: Proteomic analysis and subsequent confirmation revealed UFSP2 and DDRGK1 were strongly expressed in tumor spheres. Bioinformatic analysis indicated high expression of UFM1 is linked with worse overall and disease-free survival, and it correlated with main EMT proteins (Zeb, Twist, and Fn) in HNSCC. UFM1 was also strongly expressed in tumor spheres compared to the adherent cells. Silencing of UFM1 reduced sphere number, size, and stemness. As Sp1 is the main transcription factor for the genes of the UFMylation system, we explored its inhibitor mithramycin, as a potential drug for CSCs inhibition. We proved mithramycin inhibits CSCs survival, induces apoptosis, and reduces UFMylation and stemness.

Conclusion: UFMylation is an important process in CSCs, and mithramycin, or its lesser toxic analogs, should be further explored as CSCs targeted therapy in HNSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660673PMC
http://dx.doi.org/10.1186/s12935-024-03609-6DOI Listing

Publication Analysis

Top Keywords

tumor spheres
12
cscs
10
head neck
8
cancer stem
8
stem cells
8
cscs proteomic
8
transcription factor
8
cscs survival
8
proteomic analysis
8
expressed tumor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!