Background: The long non-coding RNA CRNDE (CRNDE) has been identified as a lncRNA associated with osteoarthritis (OA), playing a role the age-related degeneration of articular cartilage. However, the precise mechanism by which CRNDE affects the physiological functions of OA chondrocytes remains unclear.

Methods: To simulate the inflammatory conditions observed in OA, interleukin (IL)-1β-stimulated chondrocyte C-28/I2 cells were utilized. The expression levels of CRNDE and miR-31 were assessed using reverse transcription-polymerase chain reaction (RT-PCR). Chondrocyte viability and apoptosis were evaluated through CCK-8 assay and flow cytometry, respectively. The levels of IL-6, IL-1β and Tumor necrosis factor (TNF-α) were determined using enzyme-linked immunosorbent assay (ELISA). mRNA expression levels of MMP-13, Aggrecan and COL2A1 were detected by quantitative RT-PCR. Western blot analysis was performed to evaluate the protein levels of factors related to cartilage matrix degradation, including p-p65, p65 and p-IκBα of the NF-κB pathway.

Results: CRNDE expression was downregulated in both OA cartilage tissues and IL-1β-stimulated chondrocytes. Overexpression of CRNDE mitigated IL-1β-stimulated chondrocytes apoptosis, inflammatory responses, and cartilage matrix degradation. Compared with healthy controls, OA tissues exhibited reduced expression of miR-31, which was negatively correlated with the expression of CRNDE. Additionally, overexpression of miR-31 partially reversed the inhibitory effects of CRNDE on apoptosis, inflammation, cartilage matrix degradation, and the inactivation of Nuclear factor (NF)-κB pathway induced by IL-1β stimulation. Moreover, silencing of CRNDE exacerbated IL-1β-induced chondrocytes damage, which was aliviated by the NF-κB pathway inhibitor, Bay 11-7082.

Conclusion: CRNDE alleviated IL-1β-induced injuries in OA chondrocytes by suppressing the miR-31-mediated NF-κB signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660450PMC
http://dx.doi.org/10.1186/s13018-024-05182-0DOI Listing

Publication Analysis

Top Keywords

cartilage matrix
12
matrix degradation
12
crnde
11
expression levels
8
il-1β-stimulated chondrocytes
8
nf-κb pathway
8
cartilage
5
chondrocytes
5
expression
5
crnde alleviates
4

Similar Publications

Objective: Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a common contributor for low back pain, which is featured by loss of extracellular matrix and nucleus pulposus cells (NPCs). Hence, our current study is undertaken to explore the potential mechanism of NPC apoptosis during IVDD. Transcription factor Dp-1 (TFDP1) expression in degenerative and non-degenerative intervertebral disc tissues was analyzed by bioinformatics.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!