Medium-wide-bandgap (MWBG) organic photovoltaic (OPV) cells have emerged as a promising category with distinctive application possibilities, especially in environments characterized by specific light conditions, such as indoor spaces. However, there are few high-efficiency MWBG acceptors, and most of them are constructed through high-cost fused central units, which limits the industrialization of MWBG OPV cells. Here, two completely nonfused MWBG acceptors, TBT-38 and TBT-43 with different alkoxy substituent positions on the thiophene rings, are synthesized. Due to the simple synthetic route and high yield, TBT-38 achieves the lowest material-only cost among high-efficiency MWBG acceptors. When blended with high-performance donor PBQx-TF, the TBT-43-based OPV cell exhibits a power conversion efficiency (PCE) of only 8.33%. In contrast, primarily due to higher exciton dissociation efficiency, charge transport capability, and favorable morphology, the TBT-38-based OPV cell delivers a PCE of 13.5% under one sun illumination, which is one of the highest results for completely nonfused OPV cells with absorption onset below 800 nm. Besides, the PBQx-TF:TBT-38-based OPV cell exhibits a PCE of 24.1% under indoor lighting. Our work presents a practical strategy for designing cost-efficient MWBG acceptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c17283 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Medium-wide-bandgap (MWBG) organic photovoltaic (OPV) cells have emerged as a promising category with distinctive application possibilities, especially in environments characterized by specific light conditions, such as indoor spaces. However, there are few high-efficiency MWBG acceptors, and most of them are constructed through high-cost fused central units, which limits the industrialization of MWBG OPV cells. Here, two completely nonfused MWBG acceptors, TBT-38 and TBT-43 with different alkoxy substituent positions on the thiophene rings, are synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!