Disturbance rejection-based adaptive non-singular fast terminal sliding mode control for a quadrotor under severe turbulent wind.

ISA Trans

Department of Automation, Key Laboratory of System Control and Information Processing of Ministry of Education, Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: December 2024

This paper presents the design of a disturbance rejection-based control strategy for a quadrotor unmanned aerial vehicle subject to model uncertainties and external disturbances described by turbulent wind gusts of severe intensity. First, an extended state observer is introduced to supply full-state and total disturbance estimations within a fixed time regardless of initial estimation errors. Then, an adaptive non-singular fast terminal sliding mode controller with a single-gain structure is proposed to reduce the tuning complexity and drive the pose of the rotorcraft while providing practical finite-time convergence, robustness to bounded external disturbances, non-overestimation of its control gain, and chattering attenuation. Furthermore, the stability of the closed-loop system is guaranteed through homogeneity and Lyapunov theory. Simulation results obtained through the ROS/Gazebo framework demonstrate graphically and quantitatively that the proposed observer-based controller reduces the influence of perturbations and requires less torque effort than existing methods in the presence of sensor noise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.12.003DOI Listing

Publication Analysis

Top Keywords

disturbance rejection-based
8
adaptive non-singular
8
non-singular fast
8
fast terminal
8
terminal sliding
8
sliding mode
8
turbulent wind
8
external disturbances
8
rejection-based adaptive
4
mode control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!