An AP2/ERF transcription factor controls generation of the twin-seedling rice.

J Adv Res

State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, College of Agriculture, Guangxi University, Nanning 530004, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • The rice floret's ovule is essential for reproduction, but the molecular processes behind its development are not well understood.
  • The study aimed to isolate the gene controlling twin-seedling rice (tsr) and investigate its role in floret development through various molecular techniques.
  • The cloning of the TSR gene revealed it encodes a transcription factor that, when mutated, results in twin-seedling traits, including open spikelet hulls and changes in the number of stamens and ovules, while regulating other genes involved in spikelet and ovule development.

Article Abstract

Introduction: The floret of rice is a main component of the spikelet, and the ovule of pistil is a critical organ for successful reproduction and determines the number of seeds. However, the molecular mechanisms underlying the ovule development remain elusive.

Objective: Twin-seedling rice has great potential for application in rice production. The study was to isolate the gene that controls twin-seedling in rice and explore the molecular function of the gene in floret development.

Methods: We discovered a twin-seedling rice (tsr) mutant and constructed different segregating populations to clone TSR gene using map-based cloning method. To explore the molecular functions of TSR in determination of the ovary number and development, we applied molecular technologies such as yeast two-hybrid assay, electrophoretic mobility shift assay (EMSA), and dual-LUC transient expression assay to search for the TSR-interacting proteins and the target genes regulated by TSR.

Results: We report here the map-based cloning of TSR which encodes an AP2/ERF transcription factor. Mutations in TSR lead to occurrence of the twin-seedling rice. The tsr mutant showed open hulls of the spikelets and displayed changes in the number of stamens and ovules of the florets. The ovary of tsr mutant contained two conjugated ovules which developed into a mature seed with two viable embryos. Mechanistic studies revealed that TSR regulates the expression levels of genes related to spikelet determination and ovule identity by binding to their promoters. Furthermore, TSR interacted with OsMADS1 and this interaction allowed OsMADS1 to modulate the transcriptional activityy of TSR on gene expression. The molecular study of TSR provides new insights into the formation and development of rice floret and helps breeders generate twin-seedling rice in production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2024.12.013DOI Listing

Publication Analysis

Top Keywords

twin-seedling rice
24
tsr mutant
12
tsr
11
rice
9
ap2/erf transcription
8
transcription factor
8
rice production
8
explore molecular
8
rice tsr
8
tsr gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!